
audiomath Documentation
Release 1.19.1

Jeremy Hill

May 15, 2024

TABLE OF CONTENTS

1 Installation 3
1.1 Compatibility and requirements . 3
1.2 Normal installation . 3
1.3 Advanced installation (from version-controlled sources) . 4

2 How to. . . 5
2.1 Read a sound from a file into memory . 5
2.2 Write a sound from memory into a file . 5
2.3 Create a sound from scratch, in memory . 6
2.4 Define a functionally-generated sound . 6
2.5 Perform simple arithmetic . 7
2.6 Extract a segment of a sound . 7
2.7 Extract selected channels from multi-channel sounds . 8
2.8 Concatenate sounds in time (splicing) . 8
2.9 Stack channels (multiplexing) . 9
2.10 Pitch-shift or time-stretch a sound . 10
2.11 Preprocess a sound using SoX . 10
2.12 Manipulate a sound in other miscellaneous ways . 11
2.13 Plot a sound . 11
2.14 Play sounds . 12
2.15 Play sounds with more-precise latency, via PsychPortAudio . 14
2.16 Record a sound into memory . 15
2.17 Record a sound directly to file . 15
2.18 Target a particular input or output device . 16
2.19 Manipulate the operating-system’s overall volume settings . 17
2.20 Measure audio latency . 18

3 API reference 19
3.1 The audiomath package . 19

3.1.1 Summary . 19
3.1.2 Classes . 19
3.1.3 Global functions and constants . 20

3.2 The Sound class . 22
3.3 The Synth class . 31
3.4 The Player class . 32
3.5 The Queue class . 39
3.6 The Fader class . 41
3.7 The Delay class . 42
3.8 The Recorder class . 42
3.9 The ffmpeg class . 45

i

3.10 The sox class . 47
3.11 The audiomath.PortAudioInterface sub-module . 50
3.12 The audiomath.PsychToolboxInterface sub-module . 55
3.13 The audiomath.Signal sub-module . 59
3.14 The audiomath.SystemVolume sub-module . 63

4 Support 65

5 License 67

6 Indices and tables 69

Python Module Index 71

Index 73

ii

audiomath Documentation, Release 1.19.1

• Permanent home: https://pypi.org/project/audiomath

• Documentation: https://audiomath.readthedocs.io

• Source code: https://bitbucket.org/snapproject/audiomath-gitrepo

When reporting any work in which you used audiomath , please cite:

• Hill NJ, Mooney SWJ & Prusky GT (2021). audiomath: a neuroscientist’s sound toolkit. Heliyon 7(2):e06236.
https://doi.org/10.1016/j.heliyon.2021.e06236

@article{hill2020audiomath,
author = {Hill, N. Jeremy and Mooney, Scott W. J. and Prusky, Glen T.},
title = {{audiomath}: a Neuroscientist's Sound Toolkit},
journal = {Heliyon},
volume = {7},
number = {2},
pages = {e06236},
month = {February},
year = {2021},
date = {2021-02-10},
doi = {10.1016/j.heliyon.2021.e06236},
url = {https://doi.org/10.1016/j.heliyon.2021.e06236},

}

audiomath is a package for Python programmers who want to record, manipulate, visualize or play sound waveforms.
It allows you to:

• Represent sounds as numeric arrays via the third-party Python package numpy (required). The arrays are con-
tained within high-level objects, allowing common operations to be performed with minimal coding—for ex-
ample: slicing and concatenation in time, selection and stacking of channels, resampling, mixing, rescaling and
modulation.

• Plot the resulting waveforms, via the third-party Python package matplotlib (optional).

• Read and write uncompressed wav files (via the Python standard library).

• Read other audio formats using the third-party AVbin library (binaries are included in the package, for a selection
of platforms).

• Record and play back sounds using the third-party PortAudio library (binaries are included in the package, for a
selection of platforms).

• Play sounds using the alternative PsychPortAudio back-end, from the (optional) psychtoolbox package, allow-
ing very precise control of latency

• Plug in other recording/playback back-ends with moderate development effort.

TABLE OF CONTENTS 1

https://pypi.org/project/audiomath
https://audiomath.readthedocs.io
https://bitbucket.org/snapproject/audiomath-gitrepo
https://doi.org/10.1016/j.heliyon.2021.e06236

audiomath Documentation, Release 1.19.1

2 TABLE OF CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Compatibility and requirements

audiomath is compatible with Python 2.7, and with Python 3.3+.

For your own Python development, it is highly advisable to install a Python distribution that you keep separate from
whatever distribution came with your operating system. Anaconda is a good choice for this. At any rate, we’ll assume
that when we direct you to type python or pip in your Terminal app or Command Prompt, you have figured out how to
ensure that the the correct distribution of Python is being addressed by these commands. On Windows, the “Anaconda
Prompt” is a good shortcut to use to ensure this.

audiomath requires the third-party package numpy for almost everything it does. When you use pip to install
audiomath , it will ensure numpy is installed too. On Windows, it will also install comtypes and psutil since these
are used by the audiomath.SystemVolume submodule.

If you want to plot sound waveforms, you will also need the third-party package matplotlib. This is optional, so it
will be left to you to python -m pip install matplotlib if you want it and do not already have it.

Similarly, you may want to install the third-party package librosa if you want to time-stretch or pitch-shift sounds.

Similarly, you may want to install the third-party package audioread which appears to provide a more flexible and
reliable way of decoding audio from files than the (now obsolescent) built-in AVbin. If installed, audioread will be
used in preference to AVbin.

1.2 Normal installation

To download the latest release from pypi.org and install it into your Python distribution:

python -m pip install audiomath

Later, when you want to upgrade an existing installation to the latest, greatest version:

python -m pip install --upgrade audiomath --no-dependencies

3

https://www.anaconda.com/download/

audiomath Documentation, Release 1.19.1

1.3 Advanced installation (from version-controlled sources)

To work with the latest sources from the git repository, you will need to ensure the git command-line tool is installed,
and then:

cd WHEREVER-YOU-WOULD-LIKE-TO-KEEP-AUDIOMATH-LONG-TERM
git clone https://bitbucket.org/snapproject/audiomath-gitrepo
cd audiomath-gitrepo
git checkout origin/release --track # creates local branch called `release`
git checkout master # back to master (unless you want to stay on `release`)
python -m pip install -e .

Note the -e flag, which tells Python to install the repository as an “editable” package. The repository’s master branch
is the bleeding edge, whereas the release branch replicates the pypi.org releases. Use git checkout master or
git checkout release to switch between them. In either case, when you want to upgrade to the latest version from
the server later on:

cd audiomath-gitrepo
git fetch
git checkout master && git merge # update to the latest changes in the master branch
git checkout release && git merge # update to the latest changes in the release branch
git checkout master # (assuming you want to be working on master, go back there)

4 Chapter 1. Installation

CHAPTER

TWO

HOW TO. . .

This page provides a tour of audiomath ’s main features. The examples all use the following conventions:

• am is an alias for the audiomath package, created with import audiomath as am;

• s is a Sound instance (as are s1, s2, etc.);

• p is a Player instance;

• r is a Recorder instance.

Many of the examples can be tried out easily using the built-in test sound:

s = am.TestSound() # returns an 8-channel Sound
s = am.TestSound('12') # returns just the first two channels

2.1 Read a sound from a file into memory

s = am.Sound('some_file.wav') # uncompressed .wav files can be read using
the standard Python library, under the hood

s = am.Sound('some_file.mp3') # other formats require the third-party AVBin
library---AVBin binaries for the most common
OS platforms are included within audiomath

2.2 Write a sound from memory into a file

s.Write('some_file.wav') # uncompressed .wav files can be written using
the standard Python library, under the hood

s.Write('some_file.flac') # other formats require the third-party
command-line utility `ffmpeg` or `sox` to be
installed on your system (you'll need to do
this yourself---see the doc for the `am.ffmpeg`
and `am.sox` classes for more info)

5

audiomath Documentation, Release 1.19.1

2.3 Create a sound from scratch, in memory

A specified number of seconds of silence:

s = am.Sound(5) # five seconds of silence
s = am.Sound(5, fs=44100, nChannels=2) # the same, with sampling frequency and

number of channels specified explicitly

. . . or from a numpy array y which can be either one-dimensional (single-channel) or two-dimensional (samples-by-
channels):

s = am.Sound(y, fs=44100)

The Sound instance’s property s.y will contain a reference to y (or, if y was one-dimensional, it will be a two-
dimensional samples-by-channels view into y). You can also initialize from another Sound instance in the same way.

Another way to create a Sound from scratch is to create an instance and then use its GenerateWaveform() method:

s = am.Sound().GenerateWaveform(freq_hz=440, duration_msec=300)

This method is identical to the function of the same name, from the semi-independent audiomath.Signal submodule.
Further useful methods duplicated from that submodule include ModulateAmplitude() and ApplyWindow().

2.4 Define a functionally-generated sound

You can use the Synth type (or even a pre-configured Synth instance) as a function decorator. That will turn the
function into a Synth instance, which is a duck-typed replacement for a numpy array. It can be used to create a Sound
either directly, or implicitly by passing it to the Player constructor:

import numpy as np
TWO_PI = 2.0 * np.pi

@am.Synth(fs=22050)
def tone440Hz(fs, sampleIndices, channelIndices):

timeInSeconds = sampleIndices / fs
return np.sin(TWO_PI * 440 * timeInSeconds)

s = am.Sound(tone440Hz) # although it doesn't really support numeric manipulation...

- or -

p = am.Player(tone440Hz) # ... so this is the more likely use-case

The function should take three arguments: a scalar sampling frequency, an m x 1 array of sample indices, and a
1 x n array of channel indices. It should return either an m x 1 or an m x n array of sample values. More options
are described in the documentation for the audiomath.Synth class.

6 Chapter 2. How to. . .

audiomath Documentation, Release 1.19.1

2.5 Perform simple arithmetic

audiomath takes its name from the ability to do simple arithmetic with Sound objects. Sounds can be effortlessly
added together (i.e. superimposed, mixed together):

s = s1 + s2

They can also be multiplied or divided—by scalars, to rescale the sound amplitude:

s /= 3
s2 = s * 2

—or by sequences of scalars, to rescale individual channels independently:

s *= [1, 0.5]

—or by other Sound objects (to perform amplitude modulation):

s = s_carrier * s_envelope

. . . although in that last case you might also want to check out the helper function audiomath.Signal.
ModulateAmplitude().

Multiplication by a sequence is a good way to turn a monophonic Sound into a stereo or multi-channel Sound:

s2 = s.Copy().MixDownToMono() * [0, 1] # mixes everything into the right channel,
and makes the left channel silent

In all cases, the Sound object is not overly fussy about matching dimensions: if two sounds of unequal duration are to
be added or multiplied together, silence is automatically appended to the shorter data array so that the lengths match.
Similarly, if one of the sounds has one channel and the other has more, the monophonic data array is automatically
replicated up to the required number of channels. An exception is only raised if both Sound objects have more than
one channel and the numbers of channels are unequal, or if they have different sampling frequencies.

The in-place versions the operators (+=, -=, *=, /=) modify the Sound instance (and where possible the numpy array
s.y inside it) in place, whereas the corresponding infix operators (+, -, *, /) create a new instance, with a copy of the
numpy array.

2.6 Extract a segment of a sound

Sound objects may be indexed using slice subscripts. The numeric start and stop values are interpreted as time in
seconds:

s2 = s[1:3] # returns a new `Sound` instance containing a "view" into a
two-second segment of `s`, starting 1 second from the beginning

s[-3:] *= 2 # doubles the amplitude of the last three seconds of `s` in-place

Start and stop times may also be expressed as strings with the format MM:SS.FFF or even HH:MM:SS.FFF:

s['02:01' : '02:03.4'] # slice from 121s to 123.4s

2.5. Perform simple arithmetic 7

audiomath Documentation, Release 1.19.1

2.7 Extract selected channels from multi-channel sounds

An optional second subscript allows you to refer to specific channels:

s2 = s[:, 0] # returns a new `Sound` instance containing a "view" into just
the first channel of `s`

s2 = s[:, :2] # returns a new `Sound` instance containing a "view" into just
the first two channels of `s`

s2 = s[:, [0,1]] # same as above, but returns a copy rather than a view (this is
consistent with the behaviour of the underlying `numpy` array,
when indexed the same way)

. . . and manipulate/assign to specific channels:

s[:, ::2] = 0 # silence every second channel of `s`, in-place

s[:, -1] = s[:, 0] # make the last channel of `s` identical to the first

Channel indices may also be strings—if so, they are interpreted as 1-based indices rather than 0-based:

s2 = s[:, 0] # _ equivalent
s2 = s[:, "1"] # /

s2 = s[:, [1,0]] # _ equivalent
s2 = s[:, "21"] # /

You may, of course, slice out a time segment at the same time as extracting channels:

s[:0.25, :2] *= 2 # double the amplitude of the first quarter-second of `s`, in
just the first two channels

You can also use the SplitChannels() method to obtain views into different channels or batches of channels.

2.8 Concatenate sounds in time (splicing)

The % operator can be used to concatenate Sound instances:

s = s1 % s2 # creates a new `Sound` instance
s %= s2 # changes instance `s` in-place

Numeric scalars stand for the corresponding number of seconds of silence:

s2 = 1.23 % s # create a new instance, with 1.23s of silence prepended
s %= 3.45 # change instance `s` by appending 3.45s of silence

Equivalently, you can also use the Concatenate() method or global Concatenate() function. Both of these auto-
matically delve into list or tuple instances included in their argument lists, which means you can use them with or
without [] encasing the to-be-concatenated arguments:

8 Chapter 2. How to. . .

audiomath Documentation, Release 1.19.1

s = am.Concatenate(s1, 5, s2) # _ equivalent (create new instance)
s = am.Concatenate([s1, 5, s2]) # /

s.Concatenate(5, s2) # _ equivalent (extend instance `s`)
s.Concatenate([5, s2]) # /

In all cases, single-channel data will get automatically replicated up to the required number of channels when you
concatenate it with a stereo or multi-channel object. But an exception will be raised if you attempt to concatenate
stereo or multi-channel objects that have different numbers of channels.

An exception is also raised if you try to concatenate Sound objects that have unequal sampling frequencies. You can
use the Resample() method to equalize them—for example:

s = s1 % s2.Copy().Resample(s1)

Note that, if you want to append or prepend silence, with the goal of ensuring a particular final duration, this is a
“padding” operation, which can be performed more easily as follows:

s.PadStartTo(2) # prepend silence to ensure a total length of at least 2 seconds

or:

s.PadEndTo(3) # append silence to `s` to ensure a total length of at least 3 seconds

s.PadEndTo(s2) # append silence to `s` to ensure total length is at least that of `s2`

2.9 Stack channels (multiplexing)

Sound objects can be assembled by “stacking”, to create objects with larger numbers of channels. The & operator is
the easiest way of doing this:

s = s1 & s2 # stack two `Sound` instances to create a third instance

s &= s1 # stack the channels of `s1` onto the channels of `s` in-place

An exception is raised if you try to stack Sound objects that have unequal sampling frequencies. You can use the
Resample() method to equalize them—for example:

s = s1 & s2.Copy().Resample(s1)

Mismatched durations are not a problem—Sound data are simply padded with silence at the end to ensure the required
length. This means that, by default, content in different channels is aligned in time at the start. To align differently, you
can combine your stacking operation with concatenation or padding:

s = s1 & (2 % s2) # stack `s1` with a 2-second-delayed version of `s2`

s &= s1.Copy().PadStartTo(s.duration) # stack extra channels onto `s`,
aligned at the end

The functional form of the stacking operator is the Stack()method (for in-place modification of a Sound instance) or
global Stack() function (for creating a new instance). Both of these automatically delve into list or tuple instances
included in their argument lists, so you can use them with or without [] encasing the arguments:

2.9. Stack channels (multiplexing) 9

audiomath Documentation, Release 1.19.1

s = am.Stack(s1, s2, s3) # _ equivalent (create new instance)
s = am.Stack([s1, s2, s3]) # /

s.Stack(s1, s2) # _ equivalent (modify instance `s`)
s.Stack([s1, s2]) # /

2.10 Pitch-shift or time-stretch a sound

audiomath does not itself contain a phase vocoder implementation, but it provides convenience wrappers around the
implementation in the optional third-party Python package librosa (which you must install separately, for example
by saying python -m pip install librosa from your shell command prompt).

To use this, you must explicitly import audiomath.StretchAndShift. This will automatically import librosa
and will then give you access to two new Sound instance methods:

s.TimeStretch(speed=0.5) # slows down `s`, doubling its duration without
changing its pitch

s.PitchShift(semitones=-12) # pitch-shifts `s` down by 1 octave, without changing
its speed or duration

2.11 Preprocess a sound using SoX

The sox class (and similarly the ffmpeg class) can be used in two ways. The first way is to create an instance—this
is an open connection to a running instance of the corresponding sox (or ffmpeg) command-line binary, good for
processing chunks of sound data sequentially and (typically) streaming it out to a file. The second way, which is often
simpler, is to use the class method Process()—this creates a temporary instance, streams to a temporary file, then
loads the resulting file contents back into memory. This allows you to transform a Sound instance according to the
effects provided by SoX, and immediately examine or further manipulate the results—for example:

s = am.TestSound('12')
s2 = am.sox.Process(s, effects='loudness -10')
The `effects` arguments are as they would appear on
the `sox` command line (see the SoX dox)

To take the same example one stage further, the following will generally equalize the perceived loudness (according to
ISO 226) across all channels of a Sound s:

s = am.TestSound().AutoScale() # eight-channel Sound
s2 = am.Stack(

am.sox.Process(eachChannel, effects='loudness -10')
for eachChannel in s.SplitChannels()

).AutoScale() # finally rescale all channels together
according to their collective maximum

10 Chapter 2. How to. . .

audiomath Documentation, Release 1.19.1

2.12 Manipulate a sound in other miscellaneous ways

The following methods are also useful for tailoring sound objects:

• AutoScale() removes DC offsets from each channel, and rescales the sound to standardize its maximum am-
plitude.

• Center() removes DC offsets from each channel.

• Fade() fades a sound in at the beginning and/or out at the end.

• MixDownToMono() converts the data to mono (single-channel) by averaging across all channels.

• Resample() changes the sampling frequency.

• Reverse() reverses the sound samples in time.

• Trim() removes data below a specified amplitude from the beginning and/or end of a sound.

All methods that modify a Sound instance in-place also return a reference to the Sound instance itself. This means
methods can be chained—for example:

s.AutoScale().Trim().Resample(44100) # `s` is modified in-place

This architecture, in combination with the Copy()method, also makes it easy to operate on a copy of a Sound instance
without modifying the original instance in-place, and assign the result to a new variable name at the end of the chain:

s2 = s.Copy().AutoScale().Trim().Resample(44100) # `s` is unchanged

2.13 Plot a sound

The third-party package matplotlib is used for plotting. Unlike numpy (a hard dependency without which audiomath
can do nothing), matplotlib is an optional part of audiomath , so it is not installed automatically. If you want to
be able to plot, you must install it yourself—for example by typing python -m pip install matplotlib at your
shell command prompt. Once you have that, plotting is as easy as:

s.Plot()

Note that, if there are multiple channels, they are vertically separated from each other on the plot so that they can be
easily distinguished. If you want a more conventional plot in which they are superimposed (so then the y-axis is more
directly interpretable) you can use audiomath.Signal.PlotSignal instead:

from audiomath.Signal import PlotSignal
s = am.TestSound('12')
PlotSignal(s, hold=False)

You can also visualize the amplitude spectrum of the sound:

from audiomath.Signal import PlotSpectrum
s = am.TestSound('1')
PlotSpectrum(s, hold=False, dB=True, xlim=[0,1000], ylim=[-120, 0], xlabel='Frequency␣
→˓(Hz)', ylabel='Power (dB)')

2.12. Manipulate a sound in other miscellaneous ways 11

audiomath Documentation, Release 1.19.1

2.14 Play sounds

The programmers’ interface to playback and recording is implemented as a generic pure-Python “front end”, and the
default “back end” is the third-party PortAudio library, binaries for which are included with audiomath for the most
common operating systems. Other back ends may be added in future, with the aim of preserving the programmers’
interface unchanged.

The quickest/dirtiest way to hear a preview of a Sound instance is to call its Play() method:

s.Play()

Note that this is synchronous—the method returns only when the Sound ends, or when you press ctrl-C. Note also that
it is verbose, as a visible reminder that it is also inefficient: on the console, you will see that a Player object is being
constructed (which takes a certain amount of time) and then destroyed at the end. For asynchronous, lower-latency
playback you will want to create a Player instance p yourself in advance, and then call p.Play() at the time-critical
moment. You can construct a Player using an existing Sound instance:

p = am.Player(s)

or indeed from anything that would also be a valid input to the Sound constructor, such as a filename:

p = am.Player('some_file.wav')

or a number of seconds of silence:

p = am.Player(6)

or a numpy array. In all cases the current Sound instance is then addressable as p.sound.

The seconds-of-silence example may seem useless until you know that a Player actually contains a Queue of Sound
instances, each of which can be thought of as one “track”. When you have multiple tracks, silences then provide one
easy way to create gaps between them. Multiple Sound instances can be loaded into a Player as a list or tuple:

p = am.Player([s1, s2, s3]) # a list of `Sound` instances...
p = am.Player([s, 0.5, 'some_file.wav']) # or any valid `Sound`-constructor argument

. . . and even from a file glob pattern:

p = am.Player('my_sounds/*.wav')

In all cases, all tracks’ sound data are fully represented in memory (all files get loaded and decoded from disk into
memory, and all numeric values get fully expanded into arrays of zeros in memory). The attribute p.queue is an
instance of type Queue, which is a container for the tracks’ corresponding Sound instances. The Queue provides a
list-like interface—for example, you can insert(), append(), del or pop() elements:

p = am.Player([]) # no tracks
p.queue.append(s)
p.queue.append(0.5)
p.queue.append('some_file.wav')
print(p.queue) # pretty-prints indices and labels, and marks which track is current

To start playing, call p.Play() or set p.playing = True. To pause, call p.Pause() or set p.playing = False.
During a call to p.Play() or p.Pause(), or alternatively during the Player() constructor call or p.Set(), you can
use optional keyword arguments to set properties of p at the same time. Properties that affect playback behavior are as
follows:

12 Chapter 2. How to. . .

audiomath Documentation, Release 1.19.1

• loop (bool): whether or not to play the current track repeatedly on a (seamless, indefinite) loop;

• repeatQueue (bool): how to handle attempts to advance beyond the end, or go back earlier than the beginning,
of p.queue (wrap around, or raise an exception);

• autoAdvance (False, True, 'play' or 'pause'): how to behave when the current track p.sound finishes
playing (True and 'play' are synonymous);

• track (int, str): the integer index of the current track p.sound within the queue p.queue (when assigning this,
you can also refer to Sound instances by their label property, e.g.: p.track = 'test12345678');

• head (float): current playback position, in seconds, within the current track (negative numbers are counted
backwards from the end of the track);

• speed (float): a multiplier for playback speed;

• pan (float): one way of panning the audio from left (-1.0) to right (+1.0);

• levels (list): a list of per-channel amplitude scaling factors, each in the range 0.0 to 1.0 (independent of pan
and volume);

• volume (float): over-all amplitude scaling factor (0.0 to 1.0)

• playing (bool): reflects and determines the current play/pause status;

So for example, to play a Sound instance s asynchronously on an endless seamless loop, the following are all equivalent:

p = am.Player(s); p.Play(loop=True)

p = am.Player(s, loop=True); p.Play()

p = am.Player(s); p.loop = True; p.Play()

p = am.Player(s, loop=True, playing=True)

By contrast, the following options let you play through a whole queue repeatedly on an endless loop (note that this will
not be precisely seamless—there is sometimes an unavoidable millisecond or so of silence between tracks):

p = am.Player('tracks/*.mp3', loop=False, repeatQueue=True, autoAdvance=True)
p.Play()

By default, playback is asynchronous—i.e., p.Play() returns immediately. However if you want synchronous play-
back, you can say:

p.Play(wait=True) # synchronous playback

You can skip to the beginning of the next, or to the beginning of the previous, track in p.queue as follows:

p.NextTrack() # _ equivalent
p.track += 1 # /

p.PreviousTrack() # _ equivalent
p.track -= 1 # /

Most Player properties support dynamic assignment—that means, you can assign a callable function to them, which
specifies the property value as a function of time. The following example uses dynamic assignment to the pan property,
to pan a sound smoothly and automatically from left to right:

2.14. Play sounds 13

audiomath Documentation, Release 1.19.1

p = am.Player(am.TestSound('12').MixDownToMono())
import math
periodInSeconds = 4.0
p.Play(loop=True, pan=lambda t: math.sin(2 * math.pi * t / periodInSeconds))

Querying p.pan will give you the instantaneous numeric value. The callable itself can be retrieved by p.
GetDynamic('pan') or by examining the p.dynamics property. More information can be obtained with help(am.
Player.dynamics).

The Play() method has low computational overhead: once you have pre-initialized a Player instance p, you can
therefore call p.Play() in time-critical parts of your code. If for any reason you need to go one step further, and
construct new Player instances at time-critical moments, you can reduce the initialization overhead by pre-initializing
a single Stream instance and then passing it as the stream argument in all new Player initializations:

s = am.TestSound('12') # sound pre-loaded into memory
m = Stream() # connection to audio hardware pre-initialized

(use the `device` keyword here to target a particular device)

p = am.Player(s, stream=m) # this constructor call is now faster

Multiple Player instances can (and do, by default) all use the same Stream instance if one has already been created. If
you want different Player instances to target different sound devices simultaneously, you will have to create a Stream
instance explicitly for each device (see below for instructions on how to target a particular input or output device) and
assign the streams explicitly when creating the respective Player instances.

2.15 Play sounds with more-precise latency, via PsychPortAudio

The Psychophysics Toolbox (a.k.a. PsychToolbox) has long been a mainstay of (Matlab-based) stimulus presentation in
neuroscience. In 2019 its audio library PsychPortAudio was ported to Python as part of the psychtoolbox Python
package. This is a specially tuned version of the PortAudio library, optimized for low latency and low jitter, with extra
functionality such the ability to pre-schedule a sound. audiomath has a separate “back-end” that can take advantage
of this. First, you will need to install the psychtoolbox package, for example by typing python -m pip install
psychtoolbox at your command prompt. Then, in your Python program, you will need to tell audiomath to use the
corresponding back-end implementation:

import audiomath as am
am.BackEnd.Load('PsychToolboxInterface')
as opposed to the default 'PortAudioInterface'

This sacrifices some functionality—most of the real-time manipulation capabilities, such as dynamic properties and
on-the-fly resampling—in return for latency improvements. In January–February 2020 our tests found that the absolute
latencies improved a little (macOS, Linux, some Windows devices) or not at all (most of our Windows devices) relative
to the best available settings of the default PortAudioInterface back-end. However, what really improved was
the jitter, when taking advantage of the unique “pre-scheduling” functionality PsychPortAudio provides. This is
implemented via the new when property of the Player class:

am.BackEnd.Load('PsychToolboxInterface')
p = am.Player(am.TestSound('12'))
offsetSeconds = 0.025
t0 = am.Seconds()
p.Play(when=t0 + offsetSeconds)

14 Chapter 2. How to. . .

audiomath Documentation, Release 1.19.1

offsetSeconds needs to be comfortably larger than the minimal absolute latency PsychPortAudio can achieve on
your hardware and OS—we found 25ms worked for most of our Windows devices, and 5ms for our Macs. Provided
this is the case, we found the time between assignment to t0 and physical delivery of the sound was accurate to within a
millisecond or two (depending on the hardware and OS) and very precise: on any given machine, the standard deviation
might be of the order of 0.1 milliseconds.

2.16 Record a sound into memory

To record sound data from an input device into memory, the most useful tool is probably the synchronous global
Record() function:

s = am.Record() # records for up to 60 seconds (less if ctrl-C
is pressed) and returns a `Sound` instance
containing the recorded data.

The length of the buffer can be specified by a numeric first argument, or you can record directly into a pre-prepared
Sound. For example, to record for just 3 seconds:

s = am.Record(3, nChannnels=1) # _ equivalent
s = am.Sound(3, nChannnels=1); am.Record(s) # /

Under the hood, the Record() function creates an instance of the Recorder class. If you want to perform asynchronous
recording, you can use this class yourself:

r = am.Recorder(10, start=False)

wait until you are ready to start, then:

r.Record()
while r.recording:

time.sleep(0.001) # or use the time however you like...
r.sound.Plot()

2.17 Record a sound directly to file

The filename argument to Record() or Recorder() allows you to stream recorded data directly to a file. This
requires the command-line utility ffmpeg to be separately installed on your system—see the audiomath.ffmpeg doc
for more details.

To record indefinitely into a file without filling up memory, you can combine this with the loop=True option, which lets
you record into a circular buffer. The following example records indefinitely into a 3-second circular buffer, streaming
the recorded data all the while into the file blah.mp3:

s2 = am.Record(3, loop=True, filename='blah.mp3')

When you press ctrl-C it stops, cleans up, and returns the last 3 seconds as a Sound instance.

2.16. Record a sound into memory 15

audiomath Documentation, Release 1.19.1

2.18 Target a particular input or output device

You can have audiomath list your devices right from the shell command prompt—for example, on a Mac:

$ python -m audiomath --devices

hostApi.name index name #in #out defaultSampleRate
Core Audio 0 < Built-in Microphone 2 0 44100
Core Audio 1 > Built-in Output 0 2 44100
Core Audio 2 ZoomAudioDevice 2 2 48000

or on Windows:

> python -m audiomath --devices

hostApi.name index name #in #out ␣
→˓defaultSampleRate
MME 0 Microsoft Sound Mapper - Input 2 0 ␣
→˓44100
MME 1 < Microphone (High Definition Aud 2 0 ␣
→˓44100
MME 2 Microphone (High Definition Aud 2 0 ␣
→˓44100
MME 3 Microsoft Sound Mapper - Output 0 2 ␣
→˓44100
MME 4 > Speakers (High Definition Audio 0 2 ␣
→˓44100
Windows DirectSound 5 < Primary Sound Capture Driver 2 0 ␣
→˓44100
Windows DirectSound 6 Microphone (High Definition Audio Device) 2 0 ␣
→˓44100
Windows DirectSound 7 Microphone (High Definition Audio Device) 2 0 ␣
→˓44100
Windows DirectSound 8 > Primary Sound Driver 0 2 ␣
→˓44100
Windows DirectSound 9 Speakers (High Definition Audio Device) 0 2 ␣
→˓44100
ASIO 10 * ASIO4ALL v2 2 2 ␣
→˓44100
ASIO 11 Realtek ASIO 2 2 ␣
→˓44100
Windows WASAPI 12 > Speakers (High Definition Audio Device) 0 2 ␣
→˓48000
Windows WASAPI 13 Microphone (High Definition Audio Device) 2 0 ␣
→˓44100
Windows WASAPI 14 < Microphone (High Definition Audio Device) 2 0 ␣
→˓44100
Windows WDM-KS 15 < Microphone (HD Audio Microphone) 2 0 ␣
→˓44100
Windows WDM-KS 16 > Speakers (HD Audio Speaker) 0 2 ␣
→˓44100
Windows WDM-KS 17 Microphone (HD Audio Microphone 2) 2 0 ␣
→˓44100

16 Chapter 2. How to. . .

audiomath Documentation, Release 1.19.1

The equivalent Python code is:

list_of_devices = am.GetDeviceInfo()
print(list_of_devices) # pretty-prints the list of device records as a table

A device record from this list, or even just the integer device index from it, can be passed as the optional device=
argument to the Player(), Recorder() and Stream() constructors, or to the Record() global function.

You can also use FindDevice() and FindDevices() to narrow down the list according to a partial device name and/or
support for a specified number of input and output channels, and to reorder the devices according to your preferred order
of host APIs:

list_of_devices = am.FindDevices(mode='oo') # match all devices that provide at
least two output channels

device = am.FindDevice(mode='oo') # find the preferred stereo output device (raise
an exception if no matching device is found)

FindDevice is called implicitly if you use a string argument as your device argument, during Player, Recorder
or Stream creation, and it is able to match partial device names, partial host-API names, or a combination of both
delimited by '//':

p = am.Player(s, device='Speakers') # matches the first device with 'Speakers' in
its name (host APIs are prioritized according to
`am.PORTAUDIO.DEFAULT_OUTPUT_API_PREFERENCE_ORDER`)

- or -

p = am.Player(s, device='WDM-KS//Speakers') # Matches host API and device explicitly

- or -

p = am.Player(s, device='WDM-KS//') # default output device of the WDM-KS host API

If p is the first Player instance to be created, it will implicitly create a Stream instance, which it will store as p.
stream. Subsequent newly-constructed Player instances will re-use the same Stream by default (unless a Stream
instance is explicitly supplied in the Player() constructor) so they will ignore the device string. This will continue
to be the case until p.stream is garbage-collected (i.e. after deletion of p and all the other Player instances that use
the same Stream).

2.19 Manipulate the operating-system’s overall volume settings

The recommended way to manipulate the system’s overall volume is with the audiomath.SystemVolume.
SystemVolumeSetting context manager:

p = am.Player(am.TestSound())

from audiomath.SystemVolume import SystemVolumeSetting
NB: the sub-module must be imported explicitly

with SystemVolumeSetting(0.1, mute=False):
p.Play(wait=True)

Also, MAX_VOLUME is a ready-made SystemVolumeSetting instance that can be used to turn the volume up to 1.0 and
ensure the output is not muted:

2.19. Manipulate the operating-system’s overall volume settings 17

audiomath Documentation, Release 1.19.1

from audiomath.SystemVolume import MAX_VOLUME

with MAX_VOLUME:
p.Play(wait=True)

On Windows, this functionality requires the third-party packages comtypes and psutil, which should have been
installed automatically as part of the python -m pip install audiomath procedure.

You can also use the lower-level functions audiomath.SystemVolume.SetVolume() and audiomath.
SystemVolume.GetVolume(). However, the context-manager strategy is more highly recommended, as it
ensures that the system volume settings are restored to their previous state when the context ends.

2.20 Measure audio latency

For this, you will need the full audiomath source-code repository, as described in the Advanced Installation sec-
tion. You will also need to build or adapt the appropriate hardware, described in python/developer-tests/
PlayerLatency-TeensySketch within the repository. Then you will need to run the script python/
developer-tests/PlayerLatency.py (run it with --help first, for an overview).

18 Chapter 2. How to. . .

CHAPTER

THREE

API REFERENCE

3.1 The audiomath package

• Summary

• Classes

• Global functions and constants

3.1.1 Summary

audiomath is a package for reading, manipulating, and writing sound waveforms. It also lets you record and play
sounds, with a high degree of real-time control over playback.

To manipulate sound waveforms, plot them, and write them to disk, use the Sound class. Usually you would initialize
a Sound instance from a filename, or from a numpy array—in the latter case your array would contain floating-point
values in the range [-1, +1], arranged samples-by-channels.

To play sounds, use the Player class. You can initialize a Player instance from a Sound instance, or from anything
that can be used to create one (e.g. a filename). You can also supply a sequence of Sound instances, or a sequence
of filenames or a glob pattern that matches multiple files: then you can have the Player instance manage multiple
“tracks”. Each Player will only play one sound at a time: to overlap sounds, create multiple Player instances.

To record a sound, use the Record function, or the Recorder class if you want to do it asynchronously.

3.1.2 Classes

• audiomath.Sound for manipulating, visualizing and writing sounds.

• audiomath.Synth for functionally generating sounds on-the-fly instead of storing them as static arrays.

• audiomath.Player for playing sounds.

• audiomath.Queue for managing playlists (every Player automatically has one of these).

• audiomath.Fader and audiomath.Delay are examples of “dynamic” callable objects that can be assigned to
Player properties.

• audiomath.Recorder for recording sounds—see also the Record() function.

• audiomath.ffmpeg for streaming audio data to file via the auxiliary third-party utility ffmpeg, from https:
//ffmpeg.org

19

https://ffmpeg.org
https://ffmpeg.org

audiomath Documentation, Release 1.19.1

• audiomath.sox for transforming audio data via the auxiliary third-party utility sox, from https://sox.
sourceforge.net

3.1.3 Global functions and constants

audiomath.Concatenate(*args)
Concatenate sounds in time, to make a new Sound instance containing a new array.

You can also concatenate Sound instances using the % operator, and can modifying an existing Sound instance
s (replacing its array s.y) using %=:

s = s1 % s2
s %= s1

Note that, in the above examples, either s1 or s2 may also be a numeric scalar: s %= 0.5 appends half a second
of silence to s.

audiomath.MakeFall(duration, fs=1000, hann=False)
Return a single-channel Sound object of the specified duration in seconds at the specified sampling frequency
fs in Hz, containing a “fade-out” envelope (i.e. a ramp from 1 to 0). If hann is True, use a raised-cosine profile
instead of a linear ramp.

See also: MakeRise(), MakePlateau(), MakeHannWindow()

audiomath.MakeHannWindow(duration, fs=1000, plateau_duration=0)
Return a single-channel Sound object of the specified duration in seconds at the specified sampling frequency
fs in Hz, containing a Hann or Tukey window—i.e. a raised-cosine “fade-in”, followed by an optional plateau,
followed by a raised-cosine “fade-out”.

See also: MakeRise(), MakePlateau(), MakeFall()

audiomath.MakePlateau(duration, fs=1000, dc=1.0)
Return a single-channel Sound object of the specified duration in seconds at the specified sampling frequency
fs in Hz, containing a constant dc value.

See also: MakeRise(), MakeFall(), MakeHannWindow()

audiomath.MakeRise(duration, fs=1000, hann=False)
Return a single-channel Sound object of the specified duration in seconds at the specified sampling frequency
fs in Hz, containing a “fade-in” envelope (i.e. a ramp from 0 to 1). If hann is True, use a raised-cosine profile
instead of a linear ramp.

See also: MakePlateau(), MakeFall(), MakeHannWindow()

audiomath.QueueTest()

Construct and return an example Queue containing example Sound instances. Initialize a Player with this to
test management of multiple tracks by the Player class.

audiomath.Record(space=60, prompt=None, verbose=None, cut=True, nChannels=None, filename=None,
**kwargs)

Record and return a Sound synchronously. Slightly easier than creating your own Recorder instance and work-
ing with that (which is what you would have to do if you want to record asynchronously).

Parameters

• space (Sound, float) – specifies either a pre-existing Sound instance into which to record, or
a number of seconds. In the latter case a Sound instance is created, pre- allocated with the
specified amount of space in seconds.

20 Chapter 3. API reference

https://sox.sourceforge.net
https://sox.sourceforge.net

audiomath Documentation, Release 1.19.1

• prompt (None, bool, str, function) – if this is left as None, a default string is composed. If
prompt is a string, it is printed to the console and the Recorder waits until it has finished (or
until ctrl-C is pressed). Alternatively, supply a callable whose non-None return value signals
that the recording should end.

• verbose (bool) – Passed through to the constructor of the Recorder object that is being
used.

• cut (bool) – If true, return a Cut() version of the Sound when recording stops—i.e. ensure
that the duration of the Sound does not exceed the duration of the recording. If false, the
entire pre-allocated space is returned, with the recording at the beginning.

• nChannels (int) – Optionally specify the number of channels to record (some APIs have
crazy defaults, like ALSA’s 32 channels - if you’re not using one of those APIs, you probably
don’t need this).

• filename (str) – Optionally, use the ffmpeg class to stream the recorded content to the spec-
ified file. This requires the ffmpeg binary to be (separately) installed—see the ffmpeg class
documentation.

• **kwargs – Additional keyword arguments are passed through to the constructor of the
Recorder object (for example, to specify the device that should be used).

Examples:

import audiomath as am

s = am.Record()
this records for up to 60 seconds (less if ctrl-C
is pressed) and returns a `Sound` instance containing
the recorded data.

s2 = am.Record(10, loop=True, filename='blah.mp3')
this records indefinitely into a 10-second circular
buffer, streaming the recorded data all the while into
the file `blah.mp3`, and when you press ctrl-C it
stops, cleans up, and returns the last 10 seconds as
a `Sound` instance.

audiomath.Stack(*args)
Stack multiple Sound objects to make a new multi-channel Sound object (appending silence to the end of each
argument where necessary to equalize lengths).

You can also stack channels of Sound instances using the & operator, and can modifying an existing Sound
instance s (replacing its array s.y) using &=:

s = s1 & s2
s &= s1

audiomath.TestSound(*channels)
Return an 8-channel Sound object, read from a wav file that is bundled with audiomath , suitable for testing
multi-channel sound output devices. Optionally, you can select particular channels using the same argument
conventions as the IsolateChannels() method. For example, you could choose to return only the first two
channels, as follows:

s = TestSound('12')

3.1. The audiomath package 21

audiomath Documentation, Release 1.19.1

audiomath.ToneTest(freq=441, amplitude=0.1, nChannels=2, waveform=<function SineWave>, **kwargs)
This diagnostic test function creates a looped Player whose Sound is a 1-second pure tone, sampled at the
preferred frequency of the Player (or the fs keyword argument passed through to it, if you want to specify
that). Use an integer frequency freq to ensure glitch-free looping—any remaining glitches and crackles you
hear when you Play() are likely the result of buffer underflows in the audio driver. This can happen if the same
Python process that is driving the sound is also working too hard on other tasks: higher latencies protect against
this.

3.2 The Sound class

class audiomath.Sound(source=None, fs=None, nChannels=2, dtype=None, bits=None, label=None)
Bases: object

Sound is a class for editing and writing sound files. (If your main aim is simply to play back existing sounds
loaded from a file, you probably want to start with a Player instead.)

A Sound instance s is a wrapper around a numpy array s.y which contains a floating-point representation of a
(possibly multi-channel) sound waveform. Generally the array values are in the range [-1, +1].

The wrapper makes it easy to perform certain common editing and preprocessing operations using Python oper-
ators, such as:

Numerical operations:

• The + and - operators can be used to superimpose sounds (even if lengths do not match).

• The * and / operators can be used to scale amplitudes (usually by a scalar numeric factor, but you can
also use a list of scaling factors to scale channels separately, or window a signal by multiplying two objects
together).

• The +=, -=, *= and /= operators work as you might expect, modifying a Sound instance’s data array in-
place.

Concatenation of sound data in time:

The syntax s1 % s2 is the same as Concatenate(s1, s2): it returns a new Sound instance
containing a new array of samples, in which the samples of s1 and s2 are concatenated in time.

Either argument may be a scalar, so s % 0.4 returns a new object with 400 msec of silence appended,
and 0.4 % s returns a new object with 400 msec of silence pre-pended.

Concatenation can be performed in-place with s %= arg or equivalently using the instance method
s.Concatenate(arg1, arg2, ...): in either case the instance s gets its internal sample array
replaced by a new array.

Creating multichannel objects:

The syntax s1 & s2 is the same as Stack(s1, s2): it returns a new Sound instance containing
a new array of samples, comprising the channels of s1 and the channels of s2. Either one may be
automatically padded with silence at the end as necessary to ensure that the lengths match.

Stacking may be performed in-place with s1 &= s2 or equivalently with the instance method s1.
Stack(s2, s3, ...): in either case instance s1 gets its internal sample array replaced by a new
array.

Slicing, expressed in units of seconds:

The following syntax returns Sound objects wrapped around slices into the original array:

22 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

s[:0.5] # returns the first half-second of `s`
s[-0.5:] # returns the last half-second of `s`

s[:, 0] # returns the first channel of `s`
s[:, -2:] # returns the last two channels of `s`
s[0.25:0.5, [0,1,3]] # returns a particular time-slice of the chosen␣
→˓channels

Where possible, the resulting Sound instances’ arrays are views into the original sound data. There-
fore, things like s[2.0:-1.0].AutoScale() or s[1.0:2.0] *= 2 will change the specified seg-
ments of the original sound data in s. Note one subtlety, however:

Does each of these examples modify the selected segment of `s` in-place?

s[0.1:0.2, :] *= 2 # yes
q = s[0.1:0.2, :]; q *= 2 # yes (`q.y` is a view into `s.y`)

s[0.1:0.2, ::2] *= 2 # yes
q = s[0.1:0.2, ::2]; q *= 2 # yes (`q.y` is a view into `s.y`)

s[0.1:0.2, 0] *= 2 # yes (creates a copy, but then uses `__
→˓setitem__` on the original)

q = s[0.1:0.2, 0]; q *= 2 # - NO (creates a copy, then just␣
→˓modifies the copy in-place)

s[0.1:0.2, [1,3]] *= 2 # yes (creates a copy, but then uses `__
→˓setitem__` on the original)

q = s[0.1:0.2, [1,3]]; q *= 2 # - NO (creates a copy, then just␣
→˓modifies the copy in-place)

A Sound instance may be constructed in any of the following ways:

s = Sound('/path/to/some/sound_file.wav')
s = Sound(some_other_Sound_instance) # creates a shallow copy
s = Sound(y, fs) # where `y` is a numpy array
s = Sound(duration_in_seconds, fs) # creates silence
s = Sound(raw_bytes, fs, nChannels=2)

Parameters

• source – a filename, another Sound instance, a numpy array, a scalar numeric value indicat-
ing the desired duration of silence in seconds, or a buffer full of raw sound data, as in the
examples above.

• fs (float) – sampling frequency, in Hz. If source is a filename or another Sound instance,
the default value will be inferred from that source. Otherwise the default value is 44100.

• nChannels (int) – number of channels. If source is a filename, another Sound instance,
or a numpy array, the default value will be inferred from that source. Otherwise the default
value is 2.

• dtype (str) – Sound data are always represented internally in floating-point. However, the
dtype argument specifies the Sound instance’s dtype_encoded property, which dictates
the format in which the instance imports or exports raw data by default.

3.2. The Sound class 23

audiomath Documentation, Release 1.19.1

• bits (int) – This is another way of initializing the instance’s dtype_encoded property (see
dtype, above), assuming integer encoding. It should be 8, 16, 24 or 32. If dtype is specified,
this argument is ignored. Otherwise, the default value is 16.

• label (str) – An optional string to be assigned to the label attribute of the Sound instance.

classmethod AddMethod(func)
Use this as a function decorator, to add a function as a new class method.

Amplitude(norm=2, threshold=0.0)
Returns a 1-D numpy array containing the estimated amplitude of each channel. With norm=2, that’s the
root-mean-square amplitude, whereas norm=1 would get you the mean-absolute amplitude.

Note that, depending on the content, the mean may reflect not only how loud the content is when it happens,
but also how often it happens. For example, loud speech with a lot of pauses might have a lower RMS than
continuous quiet speech. This would make it difficult to equalize the volumes of the two speech signals. To
work around this, use the threshold argument. It acts as a noise-gate: in each channel, the average will
only include samples whose absolute value reaches or exceeds threshold times that channel’s maximum
(so the threshold value itself is relative, expressed as a proportion of each channel’s maximum—this
makes the noise-gate invariant to simple rescaling).

ApplyWindow(func=<function hanning>, axis=0, **kwargs)
If s is a numpy.ndarray, return a windowed copy of the array. If s is an audiomath.Sound object (for
example, if this is being used a method of that class), then its internal array s.y will be replaced by a
windowed copy.

Windowing means multiplication by the specified window function, along the specified time axis.

func should take a single positional argument: length in samples. Additional **kwargs, if any, are passed
through. Suitable examples include numpy.blackman, numpy.kaiser, and friends.

AutoScale(max_abs_amp=0.95, center='median')
Remove the DC offset from each channel (see Center()) and then rescale the waveform so that its maxi-
mum absolute value (across all channels) is max_abs_amp.

Valid center options include 'median', 'mean', 'none', or numeric values (scalar, or one per channel).

The array self.y is modified in place.

Bulk(encoded=False)
Return the number of bytes occupied by the sound waveform. . .

encoded=False:
. . . currently, in memory.

encoded=True:
. . . if it were to be encoded according to the currently-specified dtype_encoded and written to disk in
an uncompressed format (excluding the bytes required to store any format header).

Cat(*args)
Concatenate the instance, in time, with the specified arguments (which may be other Sound instances
and/or numpy arrays and/or numeric scalars indicating durations of silent intervals in seconds). Replace
the sample array self.y with the result. Similar results can be obtained with the %= operator or the global
function Concatenate().

Center(center='median')
Remove the DC offset from each channel by subtracting its center value.

Valid center options include 'median', 'mean', 'none', or numeric values (scalar, or one per channel).

The array self.y is modified in place.

24 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

Concatenate(*args)
Concatenate the instance, in time, with the specified arguments (which may be other Sound instances
and/or numpy arrays and/or numeric scalars indicating durations of silent intervals in seconds). Replace
the sample array self.y with the result. Similar results can be obtained with the %= operator or the global
function Concatenate().

Copy(empty=False)
Create a new Sound instance whose array y is a deep copy of the original instance’s array. With
empty=True the resulting array will be empty, but will have the same number of channels as the origi-
nal.

Note that most other preprocessing methods return self as their output argument. This makes it easy to
choose between modifying an instance in- place and creating a modified copy. For example:

s.Reverse() # reverse `s` in-place
t = s.Copy().Reverse() # create a reversed copy of `s`

Cut(start=None, stop=None, units='seconds')
Shorten the instance’s internal sample array by taking only samples from start to stop. Either end-point
may be None. Either may be a positive number of seconds (measured from the start) or a negative number
of seconds (measured from the end).

Detect(threshold=0.05, center=True, p=0, eachChannel=False, units='seconds')
This method finds time(s) at which the absolute signal amplitude exceeds the specified threshold.

If center is truthy, subtract the median of each channel first.

p denotes the location of interest, as a proportion of the duration of the above-threshold data. So, 0.0 means
“the first time the signal exceeds the threshold”, 1.0 means “the last time the signal exceeds the threshold”,
and 0.5 means halfway in between those two time points. pmay be a scalar, in which case the method returns
one output argument. Alternatively p may be a sequence, in which case a sequence of output arguments is
returned, each one corresponding to an element of p.

If eachChannel is truthy, each output will itself be a sequence (one element per channel). If it is untruthy,
each output will be a scalar (the signal is considered to have exceeded the threshold when any of its channels
exceeds the threshold).

units may be 'seconds', 'milliseconds' or 'samples' and it dictates the units in which the outputs
are expressed.

Duration()

Returns the duration of the sound in seconds.

Envelope(granularity=0.002, fs=None, includeDC=False, minThickness=0.01, bars=False)
This is both a global function (working on a numpy array s together with a sampling frequency fs) and a
Sound method (working on a Sound instance s, in which case no separate fs argument is required).

It returns (timebase, lower, upper), where lower and upper are the lower and upper bounds on
the signal amplitude. Amplitude os computed in adjacent non-overlapping bins, each bin being of width
granularity (expressed in seconds).

lower and upper will be adjusted such that they are always at least minThickness apart. Also, if you
supply per-channel values as includeDC, then the bounds will be adjusted such that the specified values
are always included. (If you simply specify includeDC=True, then the per-channel median values of s
will be used in this way.)

The return values are suitable for plotting as follows:

3.2. The Sound class 25

audiomath Documentation, Release 1.19.1

s = TestSound('12')
t, lower, upper = s.Envelope()
import matplotlib.pyplot as plt
for iChannel in range(s.nChannels):

plt.fill_between(t, lower[:, i], upper[:, i])

(NB: You do not actually need to plot it by hand in this way, because the Sound.Plot method will do it
for you: “envelope mode” is used by default for sounds longer than 60 seconds, and this decision can be
overridden in either direction by passing envelope=True or envelope=False.)

By default, t is strictly increasing. But if you set bars=True then values will be repeated in t, lower and
upper such that only horizontal and vertical edges will appear in the plots (Manhattan skyline style).

Fade(risetime=0, falltime=0, hann=False)
If risetime is greater than zero, it denotes the duration (in seconds) over which the sound is to be faded-in
at the beginning.

If falltime is greater than zero, it denotes the duration of the corresponding fade-out at the end.

If hann is true, then a raised-cosine function is used for fading instead of a linear ramp.

The array self.y is modified in-place.

GenerateWaveform(freq_hz=1.0, phase_rad=None, phase_deg=None, amplitude=1.0, dc=0.0,
samplingfreq_hz=None, duration_msec=None, duration_samples=None, axis=None,
waveform=<ufunc 'cos'>, waveform_domain='auto', **kwargs)

Create a signal (or multiple signals, if the input arguments are arrays) which is a function of time (time
being defined along the specified axis).

If this is being used as a method of an audiomath.Sound instance, then the container argument is
automatically set to that instance. Otherwise (if used as a global function), the container argument is op-
tional—if supplied, it should be a audiomath.Sound object. With a container, the axis argument is set
to 0, and the container object’s sampling frequency number of channels and duration (if non-zero) are used
as fallback values in case these are not specified elsewhere. The resulting signal is put into container.y
and a reference to the container is returned.

Default phase is 0, but may be changed by either phase_deg or phase_rad (or both, as long as the values
are consistent).

Default duration is 1000 msec, but may be changed by either duration_samples or duration_msec (or
both, as long as the values are consistent).

If duration_samples is specified and samplingfreq_hz is not, then the sampling frequency is chosen
such that the duration is 1 second—so then freq_hz can be interpreted as cycles per signal.

The default waveform function is numpy.coswhich means that amplitude, phase and frequency arguments
can be taken straight from the kind of dictionary returned by fft2ap() for an accurate reconstruction. A
waveform function is assumed by default to take an input expressed in radians, unless the first argument in
its signature is named cycles, samples, seconds or milliseconds, in which case the input argument
is adjusted accordingly to achieve the named units. (To specify the units explicitly as one of these options,
pass one of these words as the waveform_domain argument.)

In this module, SineWave(), SquareWave(), TriangleWave() and SawtoothWave() are all functions
of cycles (i.e. the product of time and frequency), whereas Click() is a function of milliseconds. Any of
these can be passed as the waveform argument.

IsolateChannels(ind, *moreIndices)
Select particular channels, discarding the others. The following are all equivalent, for selecting the first two
channels:

26 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

t = s.IsolateChannels(0, 1) # ordinary 0-based indexing
t = s.IsolateChannels([0, 1])
t = s.IsolateChannels('1', '2') # when you use strings, you
t = s.IsolateChannels(['1', '2']) # can index the channels
t = s.IsolateChannels('12') # using 1-based numbering

Equivalently, you can also use slicing notation, selecting channels via the second dimension:

t = s[:, [0, 1]]
t = s[:, '12'] # again, strings mean 1-based indexing

Left()

Return a new Sound instance containing a view of alternate channels, starting at the first.

MakeHannWindow(plateau_duration=0)
Return a single-channel Sound object of the same duration and sampling frequency as self, containing
a Hann or Tukey window—i.e. a raised-cosine “fade-in”, followed by an optional plateau, followed by a
raised- cosine “fade-out”.

MixDownToMono()

Average the sound waveforms across all channels, replacing self.y with the single-channel result.

ModulateAmplitude(freq_hz=1.0, phase_rad=None, phase_deg=None, amplitude=0.5, dc=0.5,
samplingfreq_hz=None, duration_msec=None, duration_samples=None, axis=None,
waveform=<ufunc 'sin'>, **kwargs)

If s is a numpy.ndarray, return a modulated copy of the array. If s is an audiomath.Sound object (for
example, if this is being used a method of that class), then its internal array s.y will be replaced by a
modulated copy.

Modulation means multiplication by the specified waveform, along the specified time axis.

Default phase is such that amplitude is 0 at time 0, which corresponds to phase_deg=-90 if waveform
follows sine phase (remember: by default the modulator is a raised waveform, because dc=0.5 by default).
To change phase, specify either phase_rad or phase_deg.

Uses GenerateWaveform()

NumberOfChannels()

Returns the number of channels.

NumberOfSamples()

Returns the length of the sound in samples.

PadEndTo(seconds)
Append silence to the instance’s internal array as necessary to ensure that the total duration is at least the
specified number of seconds.

PadStartTo(seconds)
Prepend silence to the instance’s internal array as necessary to ensure that the total duration is at least the
specified number of seconds.

Play(*pargs, **kwargs)
This quick-and-dirty method allows you to play a Sound . It creates a Player instance in verbose mode,
uses it to play the sound, waits for it to finish (or for the user to press ctrl-C), then destroys the Player
again.

You will get a better user experience, and better performance, if you explicitly create a Player instance of
your own and work with that.

3.2. The Sound class 27

audiomath Documentation, Release 1.19.1

Arguments are passed through to the Player.Play() method.

Plot(zeroBased=False, maxDuration=None, envelope='auto', title=True, timeShift=0, timeScale=1,
hold=False, finish=True)

Plot the sound waveform for each channel. The third-party Python package matplotlib is required to
make this work— you may need to install this yourself.

Parameters

• zeroBased (bool) – This determines whether the y-axis labels show zero-based channel
numbers (Python’s normal convention) or one-based channel numbers (the convention fol-
lowed by almost every other audio software tool). In keeping with audiomath’s slicing
syntax, zero-based indices are expressed as integers whereas one-based channel indices
are expressed as string literals.

• maxDuration (float, None) – Long sounds can take a prohibitive amount of time and mem-
ory to plot. If maxDuration is not None, this method will plot no more than the first
maxDuration seconds of the sound. If this means some of the sound has been omitted, a
warning is printed to the console.

• envelope (bool, float, ‘auto’) – With envelope=True, plot the sound in “envelope mode”,
which is less veridical when zoomed-in but which uses much less time and memory in
the graphics back end. With envelope=False, plot the sound waveform as a line. With
the default value of envelope='auto', only go into envelope mode when plotting more
than 60 seconds’ worth of sound. You can also supply a floating-point value, expressed in
seconds: this explicitly enforces envelope mode with the specified bin width.

• title (bool, str) – With title=True, the instance’s label attribute is used as the axes title.
With title=False or title=None, the axes title is left unchanged. If a string is supplied
explicitly, then that string is used as the axes title.

• timeShift (float) – The x-axis (time) begins at this value, expressed in seconds.

• timeScale (float) – After time-shifting, the time axis is multiplied by this number. For
example, you can specify timeScale=1000 to visualize your sound on a scale of millisec-
onds instead of seconds.

• hold (bool) – With hold=False, the axes are cleared before plotting. With hold=True,
the plot is superimposed on top of whatever is already plotted in the current axes.

Read(source, raw_dtype=None, toolkit='auto', verbose=False)

Parameters

• source – A filename, or a byte string containing raw audio data. With filenames, files
are decoded according to their file extension, unless the raw_dtype argument is explicitly
specified, in which case files are assumed to contain raw data without header, regardless of
extension.

• raw_dtype (str) – If supplied, source is interpreted either as raw audio data, or as the
name of a file containing raw audio data without a header. If source is a byte string con-
taining raw audio data, and raw_dtype is unspecified, raw_dtype will default to self.
dtype_encoded. Examples might be float32 or even float32*2—the latter explicitly
overrides the current value of self.NumberOfChannels() and interprets the raw data as
2-channel.

• toolkit (str) – Must be 'auto' (which is the default), or 'wave', 'audioread' or
'avbin'. Determines which of the back-ends to use for decoding audio. AVbin bina-
ries for common platforms are included, but the AVbin project is no longer maintained,
so support may become sparser/buggier over time. It is recommended that you install the

28 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

optional third-party package audioread which appears to offer better performance (you
may also need to install the ffmpeg utility on some platforms/for some file types).

• verbose (bool) – If set to True, report toolkit decision-making and decoding progress to
stdout.

Resample(newfs)
Change the instance’s sampling frequency. Replace its internal array with a new array, interpolated at the
new sampling frequency newfs (expressed in Hz).

Reverse()

Reverse the sound in time. The array self.y is modified in-place.

Right()

Return a new Sound instance containing a view of alternate channels, starting at the second (unless there
is only one channel, in which case return that).

SamplesToSeconds(samples)
Convert samples to seconds given at the sampling frequency of the instance. samples may be a scalar, or
a sequence or array. The result is returned in floating-point.

See also: SecondsToSamples()

SecondsToSamples(seconds, rounding='round')
Convert seconds to samples given the Sound instance’s sampling frequency. seconds may be a scalar, or a
sequence or array. The rounding approach may be 'floor', 'round', 'ceil', 'none' or 'int'. The
'int' option rounds in the same way as 'floor' but returns integers—all other options return floating-
point numbers.

See also: SamplesToSeconds()

SplitChannels(nChannelsEach=1)
Return a list of new Sound instances, each containing a view into the original data, each limited to
nChannelsEach consecutive channels.

Stack(*args)
Stack the instance, across channels, with the specified arguments (which may be other Sound instances
and/or numpy arrays). Replace the sample array self.y with the result. Similar results can be obtained
with the &= operator or the global function Stack().

Trim(threshold=0.05, tailoff=0.2, buildup=0)
Remove samples from the beginning and end of a sound, according to amplitude.

The new waveform will start buildup seconds prior to the first sample on which the absolute amplitude in
any channel exceeds threshold. It will end tailoff seconds after the last sample on which threshold
is exceeded.

copy(empty=False)
Create a new Sound instance whose array y is a deep copy of the original instance’s array. With
empty=True the resulting array will be empty, but will have the same number of channels as the origi-
nal.

Note that most other preprocessing methods return self as their output argument. This makes it easy to
choose between modifying an instance in- place and creating a modified copy. For example:

s.Reverse() # reverse `s` in-place
t = s.Copy().Reverse() # create a reversed copy of `s`

3.2. The Sound class 29

audiomath Documentation, Release 1.19.1

dat2str(data=None, dtype=None)
Converts from a numpy.array to a string. data defaults to the whole of s.y

The string output contains raw bytes which can be written, for example, to an open audio stream.

property PitchShift

To use the PitchShift method of the Sound class, you must first explicitly import audiomath.
StretchAndShift.

property TimeStretch

To use the TimeStretch method of the Sound class, you must first explicitly import audiomath.
StretchAndShift.

property bits

Bit depth of each sample in each channel, when encoded (not necessarily as represented in memory for
manipulation and visualization).

property bytes

Number of bytes used to represent each sample of each channel, when encoded (not necessarily as repre-
sented in memory for manipulation and visualization).

property duration

Returns the duration of the sound in seconds.

property fs

Sampling frequency, in Hz.

property nChannels

Returns the number of channels.

property nSamples

Returns the length of the sound in samples.

property nbits

Bit depth of each sample in each channel, when encoded (not necessarily as represented in memory for
manipulation and visualization).

property nbytes

Number of bytes used to represent each sample of each channel, when encoded (not necessarily as repre-
sented in memory for manipulation and visualization).

property nchan

Returns the number of channels.

property nsamp

Returns the length of the sound in samples.

property numberOfChannels

Returns the number of channels.

property numberOfSamples

Returns the length of the sound in samples.

property rms

a 1-D numpy array containing root-mean-square amplitude for each channel, i.e. the same as
Amplitude(norm=2, threshold=0)

property y

numpy array containing the actual sound sample data.

30 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

3.3 The Synth class

class audiomath.Synth(func=None, fs=44100, duration='inf', nChannels=1, dtype='float32')
Bases: object

This class is a duck-typed substitute for the numpy array s.y at the heart of a Sound instance s, but instead of
containing static data it allows on-the-fly functional computation of the sound signal.

Example:

import numpy as np, audiomath as am
TWO_PI = 2.0 * np.pi
carrierFreq = 440
modFreq = 0.5
@am.Synth
def wobble(fs, samples, channels):

t = samples / fs
return np.sin(TWO_PI * carrierFreq * t) * (0.5 - 0.5 * np.cos(TWO_PI * modFreq␣

→˓* t))
p = am.Player(wobble) # could also say am.Sound(wobble)
print(p.sound)
p.Play()

You can also use a pre-configured instance of Synth as the decorator, with the same effect:

@am.Synth(fs=22050)
def y(fs, samples, channels):

t = samples / fs
return np.sin(2 * np.pi * 440 * t)

p = am.Player(y) # could also say am.Sound(y)

. . . or the Use() method of an instance:

y = am.Synth()
@y.Use
def func(fs, samples, channels): # this way, `func` will be unchanged

t = samples / fs
return np.sin(2 * np.pi * 440 * t)

p = am.Player(y) # could also say am.Sound(y)

. . . or you can subclass am.Synth with func as an overshadowed method:

class Tone(am.Synth):
def func(self, fs, samples, channels):

return np.sin(2 * np.pi * self.freq * samples / fs)
t = Tone()
t.freq = 440
p = am.Player(t)

Parameters

• func – A function that takes three arguments: a scalar sampling frequency, an m x 1 array
of sample indices, and a 1 x n array of channel indices. func should return an m x 1 or m
x n array of sample values.

3.3. The Synth class 31

audiomath Documentation, Release 1.19.1

Alternatively, func may be defined like a method (four arguments, the first being self).

• fs (float) – Scalar numeric value specifying the sampling rate.

• duration (float) – The nominal duration of the sound in seconds. May be infinite.

• nChannels (int) – Nominal number of channels.

• dtype (str) – numpy data type for the generated sample data.

static func(fs, samples, channels)
Demo function. Replace this, e.g. by saying y.func = something_else, where y is your Synth in-
stance. Or use the @y.Use decorator when defining a new function. Or use @Synth as the decorator in the
first place.

3.4 The Player class

class audiomath.Player(sound, device=None, stream=None, bufferLengthMsec=None,
minLatencyMsec=None, fs=None, resample=False, verbose=None, **kwargs)

Bases: GenericPlayer

A Player provides a persistent connection to the chosen playback hardware, allowing a Sound instance to be
played.

A Player instance can only play one Sound at a time, but it can optionally maintain a list of Sound instances
in a Queue and switch between them. For overlapping sounds, use multiple Player instances.

A Player instance can be created directly from a filename, list of filenames or filename glob pattern. The current
Sound instance is available in the sound property and the complete Queue is available in the queue property.

It is better to create a Player instance than to rely on the quick-and-dirty Play() methods of the Sound
and Queue classes—these methods just create a Player (entailing some computational overhead), wait syn-
chronously for it to finish, and then destroy it again. Creating your own Player instance provides much greater
flexibility and performance.

Parameters

• sound (str, Sound, Queue, None) – Sound instance to play (or sequence of Sound instances
in a list or Queue). Alternatively, supply any argument that is also a valid input to the
Sound or Queue constructors (e.g. a filename, list of filenames, or file glob pattern).

• device (int, str, dict, Stream, None) – Optionally use this argument to specify the de-
vice/stream to use for playback—as an integer index, a device name, a full device record
from FindDevice(), or (fastest of all) an already-open Stream instance.

• stream (int, str, dict, Stream, None) – Synonymous with device, for compatibility.

• bufferLengthMsec (float, None, ‘auto’) – Optionally specify a buffer length in millisec-
onds when creating your first Player or first Stream (after that, Player instances may
share an open Stream instance so it is possible that only the first call will make any differ-
ence). Larger buffer lengths lead to higher playback latencies. None means use whatever is
currently globally configured in PORTAUDIO.DEFAULT_BUFFER_LENGTH_MSEC. 'auto' or
'pa-default' means use the default supplied by the PortAudio library.

• minLatencyMsec (float, None, ‘auto’) – Use this setting to override the PortAudio de-
fault for “suggested” latency when creating a Stream. The values supplied here typically
undershoot the empirically measurable latency (in a non-linear fashion) but larger values
mean greater robustness (less crackle/stutter susceptibility) at the cost of longer latencies

32 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

and higher jitter. None means use whatever is currently globally configured in PORTAUDIO.
DEFAULT_MIN_LATENCY_MSEC. 'auto'means use certain defaults that we have empirically
derived to balance these factors. 'pa-default'means use the defaults supplied by the Por-
tAudio library.

• fs (float, None) – Optionally specify the sampling frequency, in Hz, when creating your first
Player or first Stream (after that, Player instances may share an open Stream instance
so it is possible that only the first call will make any difference).

• resample (bool) – Specifies how to handle potential mismatch between the sampling fre-
quency of the sound data self.sound.fs and the sampling frequency of the output stream
self.stream.fs. If true, replace self.sound with a copy resampled to the stream’s pre-
ferred rate. If false, simply adjust playback speed accordingly (at a small, ongoing, compu-
tational cost).

• verbose (bool, None) – Verbosity for debugging. If None, inherit from the setting specified
by SetDefaultVerbosity(), if any.

• **kwargs – passed through to Set() to initialize properties of the Player instance.

GetDynamic(name)
For dynamic properties, return the actual callable object that generates property values, rather than the
current static value.

Parameters
name (str) – Name of the property

Returns
Callable object responsible for generating values for the named property (or None if there is
no such dynamic).

Example:

import audiomath as am, numpy as np
p = am.Player(am.TestSound('12'), loop=True, playing=True)
p.volume = lambda t: 0.5+0.5*np.sin(2.0*np.pi*t*0.25)
v = p.volume # this retrieves a float
f = p.GetDynamic('volume') # this retrieves the lambda

NextTrack(count=1, raiseException=True)
Jump to the beginning of the next track in the queue and return the corresponding Sound instance.

If this entails going beyond the last track, raise an exception unless raiseException=False (in which
case go to the beginning of the last track, stop playing, and return None).

Pause(position=None, **kwargs)
Stop playing. Optionally change the head position to the specified absolute position in seconds, ready
for subsequent playback. Optionally, use keyword arguments to set additional properties (e.g. volume,
pan, levels, speed , loop, etc) at the same time.

Play(position=None, wait=False, **kwargs)
Start playing. Optionally use position to specify the exact head position from which to start playing (in
seconds from the beginning of the current sound). Otherwise playack starts from wherever it last ended
up (or at the beginning, if the sound previously ran to the end).

If you call p.Play() without an explicit position on an instance p that is already playing, nothing
changes—playback simply continues. In this sense it is equivalent to manipulating the playing property
by saying p.playing = True.

If wait is true, immediately call Wait() so that playback is synchronous.

3.4. The Player class 33

audiomath Documentation, Release 1.19.1

Optionally, use further keyword arguments to set additional properties (e.g. volume, pan, levels, speed ,
loop, track , etc) at the same time.

PreviousTrack(count=1, raiseException=True)
Jump to the beginning of the track prior to the current one in the queue and return the corresponding Sound
instance.

If this entails going back beyond the beginning, raise an exception unless raiseException=False (in
which case go to the beginning of the first track, stop playing, and return None).

Unlike the “back” button on your music player, this does not go to the beginning of the current track before
skipping to the previous track. To restart the current track, use p.Play(0) or p.Seek(0) or p.head = 0

Resample(newFs, wholeQueue=True)
Replace self.sound with a copy resampled at the new sampling rate newFs. Also adjust the Player’s
internal speed compensation factor, to ensure things sound the same on the existing stream. The most
common usage will be to match the sound sample rate to the sample rate of the hardware (so the Player’s
compensation factor becomes 1.0) to ensure more efficient playback.

ResetDynamics(synchronized=None)
To restart the clock from which the dynamic properties of a Player instance p are computed, resetting its
“time zero” to the current time:

p.ResetDynamics()

To set the synchronizeDynamics policy at the same time, pass True or False as the input argument.

To synchronize p to a global “time zero” that multiple Player instances can share (hence, necessarily,
unsynchronized with respect to the playing/pausing of p itself):

p.ResetDynamics('global')

See also: dynamics, synchronizeDynamics

Seek(position, relative=False)
Move the playback head to the specified position in seconds. Negative values count back from the end
of self.sound. If relative is true, position is interpreted as an offset relative to the current head
position. The following are equivalent:

p.Seek(5.0, relative=False) # more efficient
p.head = 5.0

And the following are also equivalent:

p.Seek(-2.0, relative=True) # more efficient
p.head -= 2.0

Set(**kwargs)
Set the values of multiple attributes or properties in one call. An error will be raised if you try to set the
value of a non-existent attribute.

Note that the Play() and Pause()methods also allow you to set arbitrary properties prior to their manip-
ulation of playing status.

Returns
self

Example:

34 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

p.Set(head=0, loop=True, volume=0.5)

SetDynamic(name, func, order=1)
Associate a “dynamic” (i.e. a function that can be called repeatedly to set an attribute) with the name of an
attribute.

For example:

foo.Set('bar', lambda t: t ** 2)

This will set foo.bar to t ** 2 every time the method foo._RunDynamics(t) is called (this call will
happen automatically from the API user’s point of view, in the object’s infrastructure implementation).

If the bar attribute happens to have been already configured as a “dynamic property” this means it supports
“dynamic value assignment”, i.e. you can do:

foo.bar = lambda t: t ** 2

as a syntactic shorthand for SetDynamic()—the setter will detect the fact that the value is callable, and
divert it to the register of dynamics rather than assigning it directly (so the actual static value you get from
querying foo.bar will not immediately change).

Parameters

• name (str) – name of the attribute

• func – callable object, or None to remove any dynamic that may already be associated with
name

• order (int, float) – optional numeric ordering key that allows you to control the serial order
in which dynamics are evaluated

Returns
self

See also: GetDynamic(), GetDynamics(), ClearDynamics()

Stop(position=None, **kwargs)
Stop playing. Optionally change the head position to the specified absolute position in seconds, ready
for subsequent playback. Optionally, use keyword arguments to set additional properties (e.g. volume,
pan, levels, speed , loop, etc) at the same time.

SwitchToTrack(position, raiseException=True, allowNegative=True)
Immediately jump to the sound at the given position in the queue (equivalent to setting the track property).

Wait()

Sleep until self stops playing, or until the user presses ctrl-C to interrupt.

WaitFor(condition, finalPlayingStatus=None)
Sleep until condition is fulfilled. The condition argument may be:

a Recorder instance:
in which case the method waits until the recorder is no longer recording;

a Player instance:
in which case the method waits until the player is no longer playing;

a string:
in which case the method will print the string as a prompt and wait for the user to enter press
ctrl-C on the console;

3.4. The Player class 35

audiomath Documentation, Release 1.19.1

any callable:
in which case the method will repeatedly call condition() between 1-ms sleeps until it
returns anything other than None.

If finalPlayingStatus is not None, then self.playing is set to its value when the wait is over. So for
example, you can prompt a user to end ongoing playback as follows:

p.WaitFor('Press ctrl-C to stop playing: ', finalPlayingStatus=False)

property autoAdvance

This property may take the following values:

False:
when the current sound finishes playing, rewind the head to the start of the current sound but do not
advance through the queue.

True or 'play':
when the current sound finishes playing, continue to the next Sound instance in the queue, if any.

'pause':
when the current sound finishes playing, advance to the next Sound instance in the queue, if any, but
pause playback.

autoAdvance is a dynamic property (see dynamics).

See also:

queue, repeatQueue, track , NextTrack(), PreviousTrack()

property dynamics

Many Player properties, such as volume, speed , pan, levels and even playing, support “dynamic
value assignment”. This means you can do something like the following:

import audiomath as am
p = am.Player(am.TestSound('12'), loop=True)

p.volume = lambda t: min(1.0, t / 5.0)

p.Play()

When queried, p.volume still appears to be a floating-point number, but this value changes as a function
of time t in seconds—in this example, the volume fades up from 0.0 to 1.0 over the course of five seconds.

Dynamic functions are called automatically in the streaming callback. You should take care to make them
as computationally lightweight and efficient as possible. Your functions may accept 0, 1 or 2 arguments. If
they accept 1 argument, it is always time in seconds. If they accept 2 arguments, these will be the Player
instance first, followed by time in seconds.

Time t may be synchronized with, or independent of, the playing/pausing status of the Player itself,
according to the synchronizeDynamics property. “Time zero” may be reset, or synchronized with other
players, using ResetDynamics().

Dynamic functions may choose to terminate and remove themselves, by saying raise StopIteration()
or even raise StopIteration(final_property_value)

See also:

synchronizeDynamics, ResetDynamics(), GetDynamic(), SetDynamic()

36 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

property head

Current playback position, in seconds relative to the beginning.

You can change the playback position by assigning to head , but note that it is fractionally faster/more
efficient to do this by calling the Seek() method.

property levels

This is an optional sequence of multipliers applied to each channel in turn. It is independent of (i.e. its
effects simply get multiplied by the effects of) other properties that affect intensity, such as volume and
pan

levels is a dynamic property (see dynamics).

property loop

This boolean-valued property determines whether the current sound should wrap around to the beginning
when it finishes playing (NB: if you are looping, you will stay on the current sound and never advance
through the queue).

loop is a dynamic property (see dynamics).

property muted

This is a boolean property that, if true, causes the Player to be silent, independent of the current volume
and/or levels.

muted is a dynamic property (see dynamics).

property norm

For a Player instance p, if you set p.pan to a scalar value between -1 and +1, the relative levels of left
and right channels are computed such that:

left ** p.norm + right ** p.norm = 1

The value p.norm=2 produces a natural-sounding pan but it means that stereo sounds are reduced to 70.71%
of their maximum amplitude by default. So instead, the default is to use the infinity-norm, p.norm='inf',
which ensures that the larger of the two sides is always 1.0

property pan

A value of -1 means left channels only, right channels silent. A value of 0 means left and right channels at
equal volume. A value of +1 means right channels only, left channels silent.

The way levels are computed from scalar values between -1 and +1 depends on norm . Alternatively, you
can supply a two- element sequence that explicitly specifies [left, right] levels.

Note that these levels are independent from (i.e. they are simply multiplied by) the overall volume and
channel-by- channel levels settings.

pan is a dynamic property (see dynamics).

property playing

This boolean property reflects, and determines, whether the Player is currently playing or paused.

playing is a dynamic property (see dynamics).

property queue

This special sequence of class Queue provides a list of Sound instances between which the Player may
switch.

The Player instance’s repeatQueue and autoAdvance properties allow you to specify how the queue is
used when a given Sound finishes playing. The track property allows you to jump immediately to a given
place in the queue.

3.4. The Player class 37

audiomath Documentation, Release 1.19.1

NB: direct manipulation of the queue, for example using its own methods self.queue.Forward() or
self.queue.Back(), will not affect whichever self.sound is currently loaded into the Player, but
they will affect what happens when that sound has finished playing. If you want to change tracks with
immediate effect, you should instead use corresponding Player methods self.NextTrack() or self.
PreviousTrack(), or manipulate the property self.track.

See also:

autoAdvance, repeatQueue, track , NextTrack(), PreviousTrack()

property repeatQueue

This boolean property is a shortcut to the sub-property self.queue.loop. If true, then moving beyond
either end of the queue causes a wrap-around to the other end.

repeatQueue is a dynamic property (see dynamics).

See also:

autoAdvance, queue, track , NextTrack(), PreviousTrack()

property sound

A reference to the Sound instance that the Player is currently playing, or None. You can change it on-
the-fly. It may also change automatically when the current sound finishes playing, if you have appended
additional Sound instances the queue and have set the autoAdvance property.

property speed

This floating-point property determines the speed at which the sound should be played. Normal speed is
1.0

speed is a dynamic property (see dynamics).

property synchronizeDynamics

Many Player properties, such as volume, speed , pan, levels and even playing, can be dynamic, i.e.
they can be set to functions of time t in seconds.

If p.synchronizeDynamics is true, then the dynamic clock pauses whenever playback pauses and re-
sumes only when playing becomes true again. Hence, if playing itself is dynamic and becomes false, it
will not be able to become true again on its own. So this example will only play once:

import audiomath as am
p = am.Player(am.TestSound('12'))
p.Play(

0,
loop = True,
synchronizeDynamics = True,
playing = lambda t: (t / p.sound.duration) % 2 < 1,

)

If p.synchronizeDynamics is false, then the dynamic clock continues even when playback is paused.
Hence, if playing is dynamic, the Player can stop and resume on a schedule. So the same example, with
only a change to the synchronizeDynamics setting, will play repeatedly, with pauses:

import audiomath as am
p = am.Player(am.TestSound('12'))
p.Play(

0,
loop = True,
synchronizeDynamics = False,

(continues on next page)

38 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

(continued from previous page)

playing = lambda t: (t / p.sound.duration) % 2 < 1,
)

A separate but related issue is that of the “time zero” from which dynamic time t is measured. By default,
time zero for a given Player instance p is the time at which p was created. The clock can be reset by using
the ResetDynamics() method. You can also synchronize p with a global clock, available to all Player
instances, by saying p.ResetDynamics('global')

See also: dynamics, ResetDynamics()

property track

If there are multiple items in the queue, this property allows you to switch between them. You may use an
integer zero-based index, a Sound instance, or the string label of that instance (provided the instance is
already in the queue)

track is a dynamic property (see dynamics).

See also:

autoAdvance, queue, repeatQueue, NextTrack(), PreviousTrack()

property vol

This floating-point property is a multiplier for the amplitude of the sound waveforms. It is independent of
(i.e. its effect simply gets multiplied by the effects of) other properties that affect channel-to- channel level
differences, such as levels and pan

volume is a dynamic property (see dynamics).

property volume

This floating-point property is a multiplier for the amplitude of the sound waveforms. It is independent of
(i.e. its effect simply gets multiplied by the effects of) other properties that affect channel-to- channel level
differences, such as levels and pan

volume is a dynamic property (see dynamics).

3.5 The Queue class

class audiomath.Queue(*sounds)
Bases: object

A list-like container for Sound instances, which keeps track of, and allows manipulation of, which element is
considered “current”.

You probably do not need to create a Queue explicitly yourself. When you create a Player instance p, the
property p.queue will automatically be initialized as a new Queue containing whatever sounds you specified in
the Player constructor call.

Back(count=1)
Move the position backward by the given count (defaults to 1).

If self.loop is False and you try to skip back past the beginning of the queue, a QueueError will be
raised. Otherwise, it will loop around to the end of the queue.

You probably will not want to call this method directly if this Queue is inside a Player instance, because it
will not automatically update the player’s sound property. Instead, use the corresponding Player method,
PreviousTrack()

3.5. The Queue class 39

audiomath Documentation, Release 1.19.1

Forward(count=1)
Move the position ahead by the given count (defaults to 1).

If self.loop is False, and you try to skip past the end of the queue, a QueueErrorwill be raised Otherwise,
it will loop back around to the start of the queue.

You probably will not want to call this method directly if this Queue is inside a Player instance, because it
will not automatically update the player’s sound property. Instead, use the corresponding Player method,
NextTrack()

MoveSound(oldIndex, newIndex)
Move sound from oldIndex to newIndex. Negative indices are acceptable.

Play(*pargs, **kwargs)
This quick-and-dirty method allows you to play a Queue. It creates a Player instance in verbose mode,
configures it with autoAdvance='play' by default, then uses it to play a copy of the queue from the
beginning, waits for it to finish (or for the user to press ctrl-C), and destroys the Player again.

You will get a better user experience, and better performance, if you explicitly create a Player instance of
your own and work with that.

Arguments are passed through to the Player.Play() method.

Restart()

Move position back to the first sound.

SetPosition(position, allowNegative=True)
Move position to the specified position.

SwapSounds(firstIndex, secondIndex)
Swap sound at firstIndex with sound at secondIndex. Negative indices are acceptable.

add(*sounds, **sound_kwargs)
Add a variable number of sounds to the end of the queue. Since nested lists are not allowed, add(),
extend() and append() are identical: any of them will accept a single Sound instance, or a sequence of
Sound instances.

Any arguments that are not already Sound instances (e.g. filenames) will be passed to the Sound construc-
tor to create such instances, along with any additional keyword arguments.

append(*sounds, **sound_kwargs)
Add a variable number of sounds to the end of the queue. Since nested lists are not allowed, add(),
extend() and append() are identical: any of them will accept a single Sound instance, or a sequence of
Sound instances.

Any arguments that are not already Sound instances (e.g. filenames) will be passed to the Sound construc-
tor to create such instances, along with any additional keyword arguments.

clear()

Empty the queue.

extend(*sounds, **sound_kwargs)
Add a variable number of sounds to the end of the queue. Since nested lists are not allowed, add(),
extend() and append() are identical: any of them will accept a single Sound instance, or a sequence of
Sound instances.

Any arguments that are not already Sound instances (e.g. filenames) will be passed to the Sound construc-
tor to create such instances, along with any additional keyword arguments.

40 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

index(arg)
Given a Sound instance that is in the queue, or its label, return its non-negative integer index within the
queue. Raise a ValueError if no such instance is found in the queue.

insert(index, *sounds, **sound_kwargs)
Insert one or more sounds into the queue at given index.

Any arguments that are not already Sound instances (e.g. filenames) will be passed to the Sound construc-
tor to create such instances, along with any additional keyword arguments.

pop(index, default=Unspecified)
Remove the Sound with the given label or index and return it. If it is not found in the list, return default
if specified (otherwise raise a KeyError).

remove(item_or_index)
Given either a Sound instance, its label, or its index within the list, remove it from the queue. Return self.

property currentSound

Return the current Sound as indexed by position

property position

Zero-based numeric index of currentSound within the list.

When assigning, you may also use a Sound instance or its label, provided that instance is in the list.

3.6 The Fader class

class audiomath.Fader(duration=1.0, start=1, end=0, transform=None, pauseWhenDone='auto')
Bases: object

A callable object that can be assigned to one of the dynamic properties of a Player to smoothly transition
from a start to an end value. It is a self- terminating dynamic: when the transition is finished, it will raise a
StopIteration exception, which will be caught by the Player, causing it to replace the dynamic with a final
static value.

Example:

import time, audiomath as am
p = am.Player(am.TestSound('12'))
fadeIn = am.Fader(3.0, start=0, end=1)
p.Play(loop=1, volume=fadeIn) # fade in
time.sleep(6.0) # wait for fade-in, then

stay constant for a few seconds
p.volume = am.Fader(3.0) # fade out, then stop.

Parameters

• duration (float) – duration of the transition, in seconds

• start (float, numpy.ndarray) – start value

• end (float, numpy.ndarray) – end value

• transform – an optional function through which to transform start, end and any value
linearly interpolated between them.

3.6. The Fader class 41

audiomath Documentation, Release 1.19.1

• pauseWhenDone – if True, Pause() the Sound when the transition is finished. If False,
do not. A value of 'auto', means “pause the sound when the transition is finished if the
end value is zero”.

3.7 The Delay class

class audiomath.Delay(seconds, initialValue=False, finalValue=True)
Bases: object

A callable object that can be assigned to one of the dynamic properties of a Player. It returns its initialValue
until the specified number of seconds has elapsed, then raises a StopIteration exception containing its
finalValue. This will be caught by the Player, causing it to replace the dynamic with the specified final
static value.

The following example causes a Player object to start playing automatically after a delay:

import audiomath as am
p = am.Player(am.TestSound('12'), synchronizeDynamics=False)

p.playing = am.Delay(5) # will start playing 5 seconds from now

3.8 The Recorder class

class audiomath.Recorder(seconds, device=None, stream=None, bufferLengthMsec=None,
minLatencyMsec=None, fs=None, start=True, loop=False, verbose=None,
filename=None, **kwargs)

Bases: GenericRecorder

A Recorder provides a persistent connection to the chosen recording hardware, allowing sound to be recorded
into a Sound instance.

You may find it more useful to use the global function Record , which synchronously records and returns a Sound
instance, than to create or interact directly with Recorder instances. However, Recorder instances are the way
to go if you want to record asynchronously, in the background.

Parameters

• seconds (float, Sound) – number of seconds to pre-allocate for recording, or an already-pre-
allocated Sound instance into which to record

• device (int, str, dict, Stream) – specification of the device/stream to use for recording (as an
index, name, full device record from FindDevice(), or already-open Stream instance)

• stream (int, str, dict, Stream) – synonymous with device, for compatibility

• fs (float, None) – Optionally specify the sampling frequency, in Hz, when creating your
first Recorder or first Stream (after that, Recorder instances may share an open Stream
instance so it is possible that only the first call will make any difference).

• start (bool) – whether to start recording immediately

• loop (bool) – whether to record indefinitely, treating self.sound as a circular buffer, or
simply stop when the capacity of self.sound is reached

• verbose (bool, None) – verbosity for debugging. If None, inherit from the setting specified
by SetDefaultVerbosity(), if any

42 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

• **kwargs – passed through to Set() to initialize properties of the Recorder instance.

Cut(position=None)
Stop recording, and return the portion of self.sound that has been recorded so far, up to the current head
position (or the explicitly specified position in seconds), as a new Sound instance.

classmethod MakeRecording(space=60, prompt=None, verbose=None, cut=True, nChannels=None,
filename=None, **kwargs)

Record and return a Sound synchronously. Slightly easier than creating your own Recorder instance and
working with that (which is what you would have to do if you want to record asynchronously).

Parameters

• space (Sound, float) – specifies either a pre-existing Sound instance into which to record,
or a number of seconds. In the latter case a Sound instance is created, pre- allocated with
the specified amount of space in seconds.

• prompt (None, bool, str, function) – if this is left as None, a default string is composed. If
prompt is a string, it is printed to the console and the Recorder waits until it has finished
(or until ctrl-C is pressed). Alternatively, supply a callable whose non-None return value
signals that the recording should end.

• verbose (bool) – Passed through to the constructor of the Recorder object that is being
used.

• cut (bool) – If true, return a Cut() version of the Sound when recording stops—i.e. ensure
that the duration of the Sound does not exceed the duration of the recording. If false, the
entire pre-allocated space is returned, with the recording at the beginning.

• nChannels (int) – Optionally specify the number of channels to record (some APIs have
crazy defaults, like ALSA’s 32 channels - if you’re not using one of those APIs, you prob-
ably don’t need this).

• filename (str) – Optionally, use the ffmpeg class to stream the recorded content to the
specified file. This requires the ffmpeg binary to be (separately) installed—see the ffmpeg
class documentation.

• **kwargs – Additional keyword arguments are passed through to the constructor of the
Recorder object (for example, to specify the device that should be used).

Examples:

import audiomath as am

s = am.Record()
this records for up to 60 seconds (less if ctrl-C
is pressed) and returns a `Sound` instance containing
the recorded data.

s2 = am.Record(10, loop=True, filename='blah.mp3')
this records indefinitely into a 10-second circular
buffer, streaming the recorded data all the while into
the file `blah.mp3`, and when you press ctrl-C it
stops, cleans up, and returns the last 10 seconds as
a `Sound` instance.

Pause(position=None, **kwargs)
Stop recording. If position is specified, move the recording head to that position, expressed in seconds
from the beginning.

3.8. The Recorder class 43

audiomath Documentation, Release 1.19.1

ReadSamples(startPositionInSamples, nSamples)
Read the specified number of samples and return them as a numpy array. If necessary, wait until the requisite
number of samples has been recorded. If self.loop==False, then this method may return fewer samples
than you ask for if the recording reaches, or has already reached, the end of the space allocated in self.
sound. Otherwise, the wraparound calculations will be handled automatically and the return value will
have the requested number of samples in chronological order.

Record(position=None, wait=False, **kwargs)
Start recording. If position is specified, move the recording head to that position, expressed in seconds
from the beginning, before starting. If wait is true, Wait() until the end, or until the user presses ctrl+C.

Seek(position, relative=False)
Move the recording head to the specified position in seconds. Negative values count back from the end
of the available recording space in self.sound. If relative is true, position is interpreted as an offset
relative to the current head position. The following are equivalent:

r.Seek(5.0, relative=False) # more efficient
r.head = 5.0

And the following are also equivalent:

r.Seek(-2.0, relative=True) # more efficient
r.head -= 2.0

Set(**kwargs)
Set the values of multiple attributes or properties in one call. An error will be raised if you try to set the
value of a non-existent attribute.

Returns
self

Example:

p.Set(head=0, recording=True)

Start(position=None, wait=False, **kwargs)
Start recording. If position is specified, move the recording head to that position, expressed in seconds
from the beginning, before starting. If wait is true, Wait() until the end, or until the user presses ctrl+C.

Stop(position=None, **kwargs)
Stop recording. If position is specified, move the recording head to that position, expressed in seconds
from the beginning.

Wait()

Sleep until self.recording is no longer true. This will occur when the allocated recording time is ex-
hausted, or if the user presses ctrl+C in the meantime.

WaitFor(condition, finalRecordingStatus=None)
Sleep until condition is fulfilled. The condition argument may be:

a Recorder instance:
in which case the method waits until the recorder is no longer recording;

a Player instance:
in which case the method waits until the player is no longer playing;

44 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

a string:
in which case the method will print the string as a prompt and wait for the user to enter press
ctrl-C on the console;

any callable:
in which case the method will repeatedly call condition() between 1-ms sleeps until it
returns anything other than None.

If finalRecordingStatus is not None, then self.recording is set to its value when the wait is over.
So for example, you can prompt a user to end an ongoing recording as follows:

r.WaitFor('Press ctrl-C to stop recording: ', finalRecordingStatus=False)

property head

Current recording position, in seconds relative to the beginning.

property loop

A boolean property. If this is True, treat self.sound as a circular buffer and record into it indef-
initely (use the Cut() method to extract the recorded data in the correct order). If
this is `False, the recorder will simply stop recording when the capacity of self.sound is reached.

3.9 The ffmpeg class

class audiomath.ffmpeg(destination, source=None, format=None, nChannels=None, fs=None, kbps=192,
transform=None, verbose=None)

Bases: AuxiliaryBinaryInterface

This class manages the auxiliary command-line binary ffmpeg (https://ffmpeg.org).

An instance of this class connects to the standalone ffmpeg executable, assuming that that IsInstalled(). The
instance can then be used to encode audio data to disk in a variety of formats. There are two main applications,
illustrated in the following examples. Both of them implicitly use ffmpeg instances under the hood:

saving a Sound in a format other than uncompressed .wav:
import audiomath as am
s = am.TestSound('12')
s.Write('example_sound.ogg')

recording direct to disk:
import audiomath as am
s = am.Record(5, loop=True, filename='example_recording.mp3')

The latter example uses an ffmpeg instance as a callable hook of a Recorder instance. For more control
(asynchronous functionality) you can do it more explicitly as follows:

import audiomath as am
h = am.Recorder(5, loop=True, start=False)
h.Record(hook=am.ffmpeg('example_recording.mp3', source=h, verbose=True))

h.Wait() # wait for ctrl-C (replace this line with whatever)
...

h.Stop(hook=None) # garbage-collection of the `ffmpeg` instance is one way to `.
(continues on next page)

3.9. The ffmpeg class 45

https://ffmpeg.org

audiomath Documentation, Release 1.19.1

(continued from previous page)

→˓Close()` it
s = h.Cut()

The ffmpeg binary is large, so it is not included in the Python package by default. Installation is up to you. You
can install it like any other application, somewhere on the system path. Alternatively, if you want to, you can put
it directly inside the audiomath package directory, or inside a subdirectory called aux-bin—the class method
ffmpeg.Install() can help you do this. If you install it inside the audiomath package, then this has two
advantages: (a) audiomath will find it there when it attempts to launch it, and (b) it will be included in the output
of Manifest('pyinstaller') which you can use to help you freeze your application.

See also:

ffmpeg.Install(), ffmpeg.IsInstalled()

Parameters

• destination (str, ffmpeg, sox) – output filename—be sure to include the file extension so that
ffmpeg can infer the desired output format; can alternatively use another instance of ffmpeg
or sox as the destination (in that case, format, nChannels and fs will also be intelligently
inferred from that instance if they are not otherwise specified);

• source (Sound, Recorder, Player, Stream) – optional instance that can intelligently specify
format, nChannels and fs all in one go;

• format (str) – format of the raw data—should be either a valid ffmpeg PCM format string
(e.g. 'f32le') or a construction argument for numpy.dtype() (e.g. 'float32', '<f4');

• nChannels (int) – number of channels to expect in each raw data packet;

• fs (int, float) – sampling frequency, in Hz;

• kbps (int) – kilobit rate for encoding;

• transform (None, function) – an optional callable that can receives each data packet, along
with the sample number and sampling frequency, and return a transformed version of the
data packet to be send to ffmpeg in place of the original;

• verbose (bool) – whether or not to print the standard output and standard error content pro-
duced by the binary.

exception NotInstalled(message='')
Bases: NotInstalled

add_note()

Exception.add_note(note) – add a note to the exception

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

static GrokFormat(format)
Convert a format specifier (anything that is accepted as an input to numpy.dtype()) into a string that
specifies sample format in ffmpeg style (e.g. 'f32le').

classmethod Install(pathToDownloadedExecutable, deleteOriginal=False, preview=False)
Auxiliary command-line binaries (like ffmpeg or sox) can be large relative to the rest of audiomath .
Therefore, they are not included in the package by default. You should download what you need from the
respective project websites (e.g. https://ffmpeg.org or http://sox.sourceforge.net)

46 Chapter 3. API reference

https://ffmpeg.org
http://sox.sourceforge.net

audiomath Documentation, Release 1.19.1

If the binary managed by this class is already installed somewhere on the operating-system’s search path,
audiomath will be able to find it, so then you probably do not need this helper function. However, if you
have just downloaded, say, a statically-linked build of ffmpeg.exe, are looking for somewhere to put it,
and want to put it inside the audiomath package directory itself, then this function will do it for you (it
will actually put it inside an automatically-created sub-directory called aux-bin). audiomath will find it
there, and it will also be included in the output of Manifest('pyinstaller') which helps if you want
to use pyinstaller to freeze your application.

NB: if the utility consists of multiple files (e.g. sox.exe and its many associated dll files on Windows)
then pathToDownloadedExecutable should be a path to the directory that contains them all.

classmethod IsInstalled()

Return True or False depending on whether the auxiliary binary executable managed by this class (ffmpeg
or sox) is accessible and executable, either inside the audiomath package (see Install()) or on the
operating system’s search path.

See also: Install()

classmethod Process(snd, destination=None, **kwargs)
Whereas instances of AuxiliaryBinaryInterface subclasses are good for processing chunks of sound
data sequentially, if you simply want to process a whole Sound instance in one go, it is easier to use this
class method. Under the hood, it will create a temporary instance, using any specified **kwargs.

You can direct its output to the file specified by destination. Alternatively you can leave
destination=None and thereby receive the output (actually written to and read back from a temporary
uncompressed wav file) as a new Sound instance returned by this function.

Example, using the sox subclass:

import audiomath as am
s = am.TestSound('12')
s2 = am.sox.Process(s, effects='loudness -10')

or, to take that example one stage further,
the following will generally equalize the
perceived loudness (according to ISO 226)
across all channels of a Sound `s`:

s = am.TestSound().AutoScale()
s2 = am.Stack(

am.sox.Process(eachChannel, effects='loudness -10')
for eachChannel in s.SplitChannels()

).AutoScale() # finally rescale all channels together
according to their collective maximum

3.10 The sox class

class audiomath.sox(destination, source=None, format=None, nChannels=None, fs=None, transform=None,
effects='', verbose=None)

Bases: AuxiliaryBinaryInterface

This class manages the auxiliary command-line binary sox (https://sox.sourceforge.net).

An instance of this class connects to the standalone sox executable, assuming that that IsInstalled(). The
instance can then be used to transform audio data in a wide variety of ways, and encode it to disk in a variety of

3.10. The sox class 47

https://sox.sourceforge.net

audiomath Documentation, Release 1.19.1

formats (although typically fewer formats than ffmpeg).

You may find the class method sox.Process() more useful than an instance.

You can also chain processing from one sox instance to another, or between a sox instance and a ffmpeg
instance, by passing the other instance as this one’s destination instead of specifying a filename.

Here is an example of chaining. Let’s say we want to use a sox effect and save the result as in mp3 format, but
sox does not support the mp3 format. So instead we write out, on a pipe, to an ffmpeg process, which can save
to mp3:

import audiomath as am
s = am.TestSound('12')
am.sox.Process(

s,
destination=am.ffmpeg('output.mp3', source=s),
effects='loudness -10',

)

The sox binary is not included in the Python package by default. Installation is up to you. You can install it like any
other application, somewhere on the system path. Alternatively, if you want to, you can put it directly inside the
audiomath package directory, or inside a subdirectory called aux-bin—the class method sox.Install() can
help you do this. If you install it inside the audiomath package, then this has two advantages: (a) audiomath will
find it there when it attempts to launch it, and (b) it will be included in the output of Manifest('pyinstaller')
which you can use to help you freeze your application.

Parameters

• destination (str, ffmpeg, sox) – output filename—be sure to include the file extension so that
ffmpeg can infer the desired output format; can alternatively use another instance of ffmpeg
or sox as the destination (in that case, format, nChannels and fs will also be intelligently
inferred from that instance if they are not otherwise specified);

• source (Sound, Recorder, Player, Stream) – optional instance that can intelligently specify
format, nChannels and fs all in one go;

• format (str) – format of the raw data—should be either a valid ffmpeg PCM format string
(e.g. 'f32le') or a construction argument for numpy.dtype() (e.g. 'float32', '<f4');

• nChannels (int) – number of channels to expect in each raw data packet;

• fs (int, float) – sampling frequency, in Hz;

• effects (str, list, tuple) – a string, or sequence of strings, specifying the effect names and
effect options to be passed to sox on the command line;

• transform (None, function) – an optional callable that can receive each data packet, along
with the sample number and sampling frequency, and return a transformed version of the
data packet to be send to sox in place of the original;

• verbose (bool) – whether or not to print the standard output and standard error content pro-
duced by the binary.

exception NotInstalled(message='')
Bases: NotInstalled

add_note()

Exception.add_note(note) – add a note to the exception

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

48 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

static GrokFormat(format)
Convert a format specifier (anything that is accepted as an input to numpy.dtype()) into a string that
specifies sample format in ffmpeg style (e.g. 'f32le').

classmethod Install(pathToDownloadedExecutable, deleteOriginal=False, preview=False)
Auxiliary command-line binaries (like ffmpeg or sox) can be large relative to the rest of audiomath .
Therefore, they are not included in the package by default. You should download what you need from the
respective project websites (e.g. https://ffmpeg.org or http://sox.sourceforge.net)

If the binary managed by this class is already installed somewhere on the operating-system’s search path,
audiomath will be able to find it, so then you probably do not need this helper function. However, if you
have just downloaded, say, a statically-linked build of ffmpeg.exe, are looking for somewhere to put it,
and want to put it inside the audiomath package directory itself, then this function will do it for you (it
will actually put it inside an automatically-created sub-directory called aux-bin). audiomath will find it
there, and it will also be included in the output of Manifest('pyinstaller') which helps if you want
to use pyinstaller to freeze your application.

NB: if the utility consists of multiple files (e.g. sox.exe and its many associated dll files on Windows)
then pathToDownloadedExecutable should be a path to the directory that contains them all.

classmethod IsInstalled()

Return True or False depending on whether the auxiliary binary executable managed by this class (ffmpeg
or sox) is accessible and executable, either inside the audiomath package (see Install()) or on the
operating system’s search path.

See also: Install()

classmethod Process(snd, destination=None, **kwargs)
Whereas instances of AuxiliaryBinaryInterface subclasses are good for processing chunks of sound
data sequentially, if you simply want to process a whole Sound instance in one go, it is easier to use this
class method. Under the hood, it will create a temporary instance, using any specified **kwargs.

You can direct its output to the file specified by destination. Alternatively you can leave
destination=None and thereby receive the output (actually written to and read back from a temporary
uncompressed wav file) as a new Sound instance returned by this function.

Example, using the sox subclass:

import audiomath as am
s = am.TestSound('12')
s2 = am.sox.Process(s, effects='loudness -10')

or, to take that example one stage further,
the following will generally equalize the
perceived loudness (according to ISO 226)
across all channels of a Sound `s`:

s = am.TestSound().AutoScale()
s2 = am.Stack(

am.sox.Process(eachChannel, effects='loudness -10')
for eachChannel in s.SplitChannels()

).AutoScale() # finally rescale all channels together
according to their collective maximum

3.10. The sox class 49

https://ffmpeg.org
http://sox.sourceforge.net

audiomath Documentation, Release 1.19.1

3.11 The audiomath.PortAudioInterface sub-module

This submodule contains PortAudio-specific implementations of high- level Player and Recorder classes.
They inherit their API-user- facing functionality, as well as their code for manipulating raw Sound data, from
GenericInterface.GenericPlayer and GenericInterface.GenericRecorder. The PortAudio-specific sub-
classes act as intermediaries between the generic stuff and the objects and functions in the _wrap_portaudio sub-
module.

This submodule also contains various global functions for listing and selecting the available sound devices and their
host APIs.

The PortAudioInterface is the default playing/recording back-end for audiomath . Therefore, all the symbols
exported by this submodule are also available at the top level audiomath.* namespace (at least until another back-end
is written, and loaded with audiomath.BackEnd.Load()).

audiomath.PortAudioInterface.FindDevice(id=None, mode=None, apiPreferences=None,
_candidates=None)

Returns the first device matched by FindDevices() (plural) according to the specified criteria. Raises an ex-
ception if there are no matches.

audiomath.PortAudioInterface.FindDevices(id=None, mode=None, apiPreferences=None,
_candidates=None)

Calls GetDeviceInfo(), filtering and reordering the outputs according to the specified criteria. You can
print() the result, or otherwise convert it to str(), to see a pretty tabulated summary.

You can use FindDevice() (singular) to return just the top-ranking result (and to assert that at least one result
can be found).

Parameters

• id (int, dict, str, None) –

– None: matches all devices;

– int: matches only the device whose index field matches id;

– dict (including the objects returned by this function, which are dict subclassses):
matches only the device whose index field matches id['index']

– str: matches any device with the specified word or phrase in its name field (you can
also match hostApi.name and name simultaneously if you delimit them with '//'—for
example, 'WDM-KS//Speakers');

• mode (str, tuple, None) – May be either a two-element tuple such as
mode=(minInputChannels,minOutputChannels), or a string containing a number of
'o' and/or 'i' characters. In either case, devices are only matched if they provide at least the
specified number of input and output channels. For example, FindDevices(mode='oo')
matches all devices that provide two or more output channels.

• apiPreferences (str, None) – If this is left at None, it defaults to the current value of
PORTAUDIO.DEFAULT_INPUT_API_PREFERENCE_ORDER (if the mode argument requests
any inputs) or PORTAUDIO.DEFAULT_OUTPUT_API_PREFERENCE_ORDER otherwise. The
string '*' matches all host APIs. Host APIs may be comma-delimited. For example,
apiPreferences='DirectSound,*' means “give first priority to devices hosted by the
DirectSound API, and then, failing that, match all other APIs”. If '*' is not included in the
specification, this argument may limit the number of records returned. In any case it will
affect the ordering of the returned records.

50 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

audiomath.PortAudioInterface.GetDeviceInfo()

Returns a list of records corresponding to PortAudio’s Pa_GetDeviceInfo() output for every available com-
bination of host API and device. You can print() the result, or otherwise convert it to str(), to see a pretty
tabulated summary.

audiomath.PortAudioInterface.GetHostApiInfo()

Returns a list of records corresponding to PortAudio’s Pa_GetHostApiInfo() output for every available host
API. You can print() the result, or otherwise convert it to str(), to see a pretty tabulated summary.

audiomath.PortAudioInterface.GetInputDevice()

Return the default input device, if any has been set.

See also: SetInputDevice()

audiomath.PortAudioInterface.GetOutputDevice()

Return the default output device, if any has been set.

See also: SetOutputDevice()

audiomath.PortAudioInterface.LowLatencyMode(turnOn, preferASIO=False)
Call this function before you create your first Stream or Player instance.

On Windows, LowLatencyMode(True)will manipulate PORTAUDIO.DEFAULT_OUTPUT_API_PREFERENCE_ORDER
to cause the WDM-KS host API (or the ASIO host API, if preferASIO is True) to be preferred over Direct-
Sound when constructing output streams. This will allow considerably lower output latencies, but will have the
side-effect of taking exclusive control of the sound driver, meaning that sounds from other applications will no
longer be audible (this may or may not be desirable, depending on your application).

LowLatencyMode(True) also sets PORTAUDIO.DEFAULT_BUFFER_LENGTH_MSEC = None, and PORTAUDIO.
DEFAULT_MIN_LATENCY_MSEC = 4, which will have the effect of lowering latencies but at the cost of making
sounds vulnerable to stuttering if Python performs any significant work during playback.

LowLatencyMode(False) reverts to factory settings (DirectSound is reinstated as the preferred host API on
Windows, and PORTAUDIO.DEFAULT_MIN_LATENCY_MSEC is set to 'auto' (which means 60 for DirectSound
and at least 10 elsewhere) for future Stream instances.

class audiomath.PortAudioInterface.Player(sound, device=None, stream=None, bufferLengthMsec=None,
minLatencyMsec=None, fs=None, resample=False,
verbose=None, **kwargs)

A Player provides a persistent connection to the chosen playback hardware, allowing a Sound instance to be
played.

A Player instance can only play one Sound at a time, but it can optionally maintain a list of Sound instances in
a Queue and switch between them. For overlapping sounds, use multiple Player instances.

A Player instance can be created directly from a filename, list of filenames or filename glob pattern. The current
Sound instance is available in the sound property and the complete Queue is available in the queue property.

It is better to create a Player instance than to rely on the quick-and-dirty Play() methods of the Sound
and Queue classes—these methods just create a Player (entailing some computational overhead), wait syn-
chronously for it to finish, and then destroy it again. Creating your own Player instance provides much greater
flexibility and performance.

Parameters

• sound (str, Sound, Queue, None) – Sound instance to play (or sequence of Sound instances
in a list or Queue). Alternatively, supply any argument that is also a valid input to the
Sound or Queue constructors (e.g. a filename, list of filenames, or file glob pattern).

3.11. The audiomath.PortAudioInterface sub-module 51

audiomath Documentation, Release 1.19.1

• device (int, str, dict, Stream, None) – Optionally use this argument to specify the de-
vice/stream to use for playback—as an integer index, a device name, a full device record
from FindDevice(), or (fastest of all) an already-open Stream instance.

• stream (int, str, dict, Stream, None) – Synonymous with device, for compatibility.

• bufferLengthMsec (float, None, ‘auto’) – Optionally specify a buffer length in millisec-
onds when creating your first Player or first Stream (after that, Player instances may
share an open Stream instance so it is possible that only the first call will make any differ-
ence). Larger buffer lengths lead to higher playback latencies. None means use whatever is
currently globally configured in PORTAUDIO.DEFAULT_BUFFER_LENGTH_MSEC. 'auto' or
'pa-default' means use the default supplied by the PortAudio library.

• minLatencyMsec (float, None, ‘auto’) – Use this setting to override the PortAudio de-
fault for “suggested” latency when creating a Stream . The values supplied here typically
undershoot the empirically measurable latency (in a non-linear fashion) but larger values
mean greater robustness (less crackle/stutter susceptibility) at the cost of longer latencies
and higher jitter. None means use whatever is currently globally configured in PORTAUDIO.
DEFAULT_MIN_LATENCY_MSEC. 'auto'means use certain defaults that we have empirically
derived to balance these factors. 'pa-default'means use the defaults supplied by the Por-
tAudio library.

• fs (float, None) – Optionally specify the sampling frequency, in Hz, when creating your first
Player or first Stream (after that, Player instances may share an open Stream instance
so it is possible that only the first call will make any difference).

• resample (bool) – Specifies how to handle potential mismatch between the sampling fre-
quency of the sound data self.sound.fs and the sampling frequency of the output stream
self.stream.fs. If true, replace self.sound with a copy resampled to the stream’s pre-
ferred rate. If false, simply adjust playback speed accordingly (at a small, ongoing, compu-
tational cost).

• verbose (bool, None) – Verbosity for debugging. If None, inherit from the setting specified
by SetDefaultVerbosity(), if any.

• **kwargs – passed through to Set() to initialize properties of the Player instance.

audiomath.PortAudioInterface.Record(space=60, prompt=None, verbose=None, cut=True,
nChannels=None, filename=None, **kwargs)

Record and return a Sound synchronously. Slightly easier than creating your own Recorder instance and work-
ing with that (which is what you would have to do if you want to record asynchronously).

Parameters

• space (Sound, float) – specifies either a pre-existing Sound instance into which to record, or
a number of seconds. In the latter case a Sound instance is created, pre- allocated with the
specified amount of space in seconds.

• prompt (None, bool, str, function) – if this is left as None, a default string is composed. If
prompt is a string, it is printed to the console and the Recorder waits until it has finished (or
until ctrl-C is pressed). Alternatively, supply a callable whose non-None return value signals
that the recording should end.

• verbose (bool) – Passed through to the constructor of the Recorder object that is being
used.

• cut (bool) – If true, return a Cut() version of the Sound when recording stops—i.e. ensure
that the duration of the Sound does not exceed the duration of the recording. If false, the
entire pre-allocated space is returned, with the recording at the beginning.

52 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

• nChannels (int) – Optionally specify the number of channels to record (some APIs have
crazy defaults, like ALSA’s 32 channels - if you’re not using one of those APIs, you probably
don’t need this).

• filename (str) – Optionally, use the ffmpeg class to stream the recorded content to the spec-
ified file. This requires the ffmpeg binary to be (separately) installed—see the ffmpeg class
documentation.

• **kwargs – Additional keyword arguments are passed through to the constructor of the
Recorder object (for example, to specify the device that should be used).

Examples:

import audiomath as am

s = am.Record()
this records for up to 60 seconds (less if ctrl-C
is pressed) and returns a `Sound` instance containing
the recorded data.

s2 = am.Record(10, loop=True, filename='blah.mp3')
this records indefinitely into a 10-second circular
buffer, streaming the recorded data all the while into
the file `blah.mp3`, and when you press ctrl-C it
stops, cleans up, and returns the last 10 seconds as
a `Sound` instance.

class audiomath.PortAudioInterface.Recorder(seconds, device=None, stream=None,
bufferLengthMsec=None, minLatencyMsec=None,
fs=None, start=True, loop=False, verbose=None,
filename=None, **kwargs)

A Recorder provides a persistent connection to the chosen recording hardware, allowing sound to be recorded
into a Sound instance.

You may find it more useful to use the global function Record , which synchronously records and returns a Sound
instance, than to create or interact directly with Recorder instances. However, Recorder instances are the way
to go if you want to record asynchronously, in the background.

Parameters

• seconds (float, Sound) – number of seconds to pre-allocate for recording, or an already-pre-
allocated Sound instance into which to record

• device (int, str, dict, Stream) – specification of the device/stream to use for recording (as an
index, name, full device record from FindDevice(), or already-open Stream instance)

• stream (int, str, dict, Stream) – synonymous with device, for compatibility

• fs (float, None) – Optionally specify the sampling frequency, in Hz, when creating your
first Recorder or first Stream (after that, Recorder instances may share an open Stream
instance so it is possible that only the first call will make any difference).

• start (bool) – whether to start recording immediately

• loop (bool) – whether to record indefinitely, treating self.sound as a circular buffer, or
simply stop when the capacity of self.sound is reached

• verbose (bool, None) – verbosity for debugging. If None, inherit from the setting specified
by SetDefaultVerbosity(), if any

3.11. The audiomath.PortAudioInterface sub-module 53

audiomath Documentation, Release 1.19.1

• **kwargs – passed through to Set() to initialize properties of the Recorder instance.

audiomath.PortAudioInterface.Seconds()

A platform-dependent high-precision clock. Origin (time zero) is arbitrary, but fixed within a given Python
session.

audiomath.PortAudioInterface.SetDefaultVerbosity(value)
Useful for debugging when the PortAudio library is initialized or terminated, when streams are opened, started,
stopped or closed, and when other objects such as players or recorders are initialized or garbage-collected. Ob-
jects may be individually marked as verbose=True or verbose=False, but by default they inherit their ver-
bosity from the setting you specify here.

audiomath.PortAudioInterface.SetInputDevice(device)
Set the specified device as the default device to be used for Recorder objects. The device argument may be
the device index, one or more words from the device name, or the full device record from GetDeviceInfo() or
FindDevices().

See also: GetInputDevice()

audiomath.PortAudioInterface.SetOutputDevice(device)
Set the specified device as the default device to be used for Player objects. The device argument may be the
device index, one or more words from the device name, or the full device record from GetDeviceInfo() or
FindDevices().

Note that, by default, Player instances share a single Stream instance—this means that the preference you
specify here (and the preference you specify in the Player constructor) may not be honored if there are already
other Player instances in existence (and hence an already-running Stream). In short: it’s best to use this
function before you construct your first Player or Stream instance.

See also: GetOutputDevice()

class audiomath.PortAudioInterface.Stream(device=None, mode=None, apiPreferences=None,
outputCallbacks=None, sampleRate=None,
sampleFormat=None, verbose=None,
bufferLengthMsec=None, minLatencyMsec=None)

A persistent connection to an audio driver. Multiple output callbacks (player objects) and/or multiple input
callbacks (recorder objects) may share the same Stream , or under some conditions it may be possible for each
callback (or object) to have its own Stream .

Typically, objects that play or record will automatically create a Stream or add themselves to an existing Stream ,
so you will not usually need to construct a Stream instance yourself. The exception is when you need to ensure
that the construction of such objects is itself fast: then, creating a Stream in advance, and keeping a reference
to it to use in initializing the other objects, will speed things up.

The device, mode and apiPreferences arguments are the same as id, mode and apiPreferences in
FindDevice().

audiomath.PortAudioInterface.Tabulate(records, *fields)
Returns a pretty-printed table of the specified fields (i.e. dictionary entries or attributes) of a list of records.
This is called automatically, with certain default combinations of field names, when you print() the results of
GetHostApiInfo(), GetDeviceInfo() or FindDevices().

54 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

3.12 The audiomath.PsychToolboxInterface sub-module

This sub-module provides an alternative back-end for high- precision playback, based on the PsychToolbox project’s
reworking of the PortAudio binaries. It requires the third-party psychtoolbox module to be installed (you must do
this yourself, for example by running python -m pip install psychtoolbox, because psychtoolbox is not a
hard/automatically-installed dependency of audiomath .

This alternative back-end can be enabled by calling audiomath.BackEnd.Load('PsychToolboxInterface').
This removes the default audiomath.PortAudioInterface.* symbols from the top-level audiomath.* namespace
and replaces them with audiomath.PsychToolboxInterface.* symbols, most of which have names and prototypes
that are familiar from the default back-end (Player, Stream , FindDevices, etc. . .)

Extra features:

• The latencyClass input parameter to Player and Stream constructors. This is only respected for the first
such construction call, since the same Stream will be shared by all Player instances). The supported settings
are all attributes of the LATENCY_CLASS enumerator. The higher the number, the more aggressively (and less
cooperatively) the host API will drive the sound device, and the lower the latency is likely to get.

• The ability to pre-schedule sounds with the when argument, e.g. now = Seconds(); p.Play(when=now +
0.5)

Limitations, relative the the default PortAudioInterface:

• Player objects cannot Seek(t) to any position except the beginning t=0 (likewise Play(t), Pause(t) or
Set(head=t) will only work if t is 0)

• no on-the-fly resampling or speed control

• no dynamic properties

• no on-the-fly sound synthesis (Synth data get frozen and truncated to 10 seconds when passed into a Player).

• no Recorder implementation

Notes

• on Windows, PsychToolbox uses the WASAPI host API by default. For best performance, and especially if you
want to use latencyClass < 2 (such that other processes can access the sound device at the same time) then
you should ensure your sounds are sampled at 48000 Hz, not the usual 44100 Hz.

• some host APIs may be unable to be driven with certain latency classes (for example, on Windows most of the
soundcard drivers we have tried cannot use WDM-KS with a latency class higher than 1)

audiomath.PsychToolboxInterface.FindDevice(id=None, mode=None, apiPreferences=None,
_candidates=None)

Returns the first device matched by FindDevices() (plural) according to the specified criteria. Raises an ex-
ception if there are no matches.

audiomath.PsychToolboxInterface.FindDevices(id=None, mode=None, apiPreferences=None,
_candidates=None)

Calls GetDeviceInfo(), filtering and reordering the outputs according to the specified criteria. You can
print() the result, or otherwise convert it to str(), to see a pretty tabulated summary.

You can use FindDevice() (singular) to return just the top-ranking result (and to assert that at least one result
can be found).

Parameters

• id (int, dict, str, None) –

3.12. The audiomath.PsychToolboxInterface sub-module 55

audiomath Documentation, Release 1.19.1

– None: matches all devices;

– int: matches only the device whose index field matches id;

– dict (including the objects returned by this function, which are dict subclassses):
matches only the device whose index field matches id['index']

– str: matches any device with the specified word or phrase in its name field (you can
also match hostApi.name and name simultaneously if you delimit them with '//'—for
example, 'WDM-KS//Speakers');

• mode (str, tuple, None) – May be either a two-element tuple such as
mode=(minInputChannels,minOutputChannels), or a string containing a number of
'o' and/or 'i' characters. In either case, devices are only matched if they provide at least the
specified number of input and output channels. For example, FindDevices(mode='oo')
matches all devices that provide two or more output channels.

• apiPreferences (str, None) – If this is left at None, it defaults to the current value of
PORTAUDIO.DEFAULT_INPUT_API_PREFERENCE_ORDER (if the mode argument requests
any inputs) or PORTAUDIO.DEFAULT_OUTPUT_API_PREFERENCE_ORDER otherwise. The
string '*' matches all host APIs. Host APIs may be comma-delimited. For example,
apiPreferences='DirectSound,*' means “give first priority to devices hosted by the
DirectSound API, and then, failing that, match all other APIs”. If '*' is not included in the
specification, this argument may limit the number of records returned. In any case it will
affect the ordering of the returned records.

audiomath.PsychToolboxInterface.GetDeviceInfo()

Returns a list of records corresponding to PortAudio’s Pa_GetDeviceInfo() output for every available com-
bination of host API and device. You can print() the result, or otherwise convert it to str(), to see a pretty
tabulated summary.

audiomath.PsychToolboxInterface.GetHostApiInfo()

Returns a list of records corresponding to PortAudio’s Pa_GetHostApiInfo() output for every available host
API. You can print() the result, or otherwise convert it to str(), to see a pretty tabulated summary.

class audiomath.PsychToolboxInterface.LATENCY_CLASS

This class is an enum container: a namespace of values that can be passed as the latencyClass constructor
argument when creating a PsychToolboxInterface.Player instance.

RELAXED (0):
indicates that latency is not a priority—latencies are then unpredictable and may be in the hundreds of
milliseconds.

SHARED (1):
applies the most aggressive latency settings that still allow other processes to play sound at the same time.

EXCLUSIVE (2):
takes exclusive control of the sound card.

AGGRESSIVE (3):
takes exclusive control of the sound card, with even more aggressive low-latency settings than EXCLUSIVE
mode.

CRITICAL (4):
is the same as AGGRESSIVE mode, but raises an exception if the settings cannot be achieved.

class audiomath.PsychToolboxInterface.Player(sound, device=None, stream=None,
latencyClass='DEFAULT', bufferLengthMsec=None,
minLatencyMsec=None, fs=None, resample=True,
verbose=None, **kwargs)

56 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

A Player provides a persistent connection to the chosen playback hardware, allowing a Sound instance to be
played.

A Player instance can only play one Sound at a time, but it can optionally maintain a list of Sound instances in
a Queue and switch between them. For overlapping sounds, use multiple Player instances.

A Player instance can be created directly from a filename, list of filenames or filename glob pattern. The current
Sound instance is available in the sound property and the complete Queue is available in the queue property.

It is better to create a Player instance than to rely on the quick-and-dirty Play() methods of the Sound
and Queue classes—these methods just create a Player (entailing some computational overhead), wait syn-
chronously for it to finish, and then destroy it again. Creating your own Player instance provides much greater
flexibility and performance.

Parameters

• sound (str, Sound, Queue, None) – Sound instance to play (or sequence of Sound instances
in a list or Queue). Alternatively, supply any argument that is also a valid input to the
Sound or Queue constructors (e.g. a filename, list of filenames, or file glob pattern).

• device (int, str, dict, Stream, None) – Optionally use this argument to specify the de-
vice/stream to use for playback—as an integer index, a device name, a full device record
from FindDevice(), or (fastest of all) an already-open Stream instance.

• stream (int, str, dict, Stream, None) – Synonymous with device, for compatibility.

• latencyClass (int, str) – specify the PsychPortAudio latency mode (use one of the names or
integer values defined in the enumerator LATENCY_CLASS)

• bufferLengthMsec (float, None) – Optionally specify a buffer length in milliseconds when
creating your first Player or first Stream . (Future Player instances will all use the same
setting.)

• minLatencyMsec (float, None, ‘auto’) – Optionally specify the value to use as “suggested
latency” when creating your first Player or first Stream . (Future Player instances will all
use the same setting.)

• fs (float, None) – Optionally specify the sampling frequency, in Hz, when creating your first
Player or first Stream (after that, Player instances may share an open Stream instance
so it is possible that only the first call will make any difference).

• resample (bool) – This should be left as True because there is no on-the-fly resampling
capability in the PsychToolboxInterface back-end, The parameter is included purely for
compatibility with code written for the default PortAudioInterface back-end.

• verbose (bool, None) – Verbosity for debugging. If None, inherit from the setting specified
by SetDefaultVerbosity(), if any.

• **kwargs – passed through to Set() to initialize properties of the Player instance.

property levels

This is an optional sequence of multipliers applied to each channel in turn. It is independent of (i.e. its
effects simply get multiplied by the effects of) other properties that affect intensity, such as volume and
pan

levels is a dynamic property (see dynamics).

property muted

This is a boolean property that, if true, causes the Player to be silent, independent of the current volume
and/or levels.

muted is a dynamic property (see dynamics).

3.12. The audiomath.PsychToolboxInterface sub-module 57

audiomath Documentation, Release 1.19.1

property norm

For a Player instance p, if you set p.pan to a scalar value between -1 and +1, the relative levels of left
and right channels are computed such that:

left ** p.norm + right ** p.norm = 1

The value p.norm=2 produces a natural-sounding pan but it means that stereo sounds are reduced to 70.71%
of their maximum amplitude by default. So instead, the default is to use the infinity-norm, p.norm='inf',
which ensures that the larger of the two sides is always 1.0

property pan

A value of -1 means left channels only, right channels silent. A value of 0 means left and right channels at
equal volume. A value of +1 means right channels only, left channels silent.

The way levels are computed from scalar values between -1 and +1 depends on norm . Alternatively, you
can supply a two- element sequence that explicitly specifies [left, right] levels.

Note that these levels are independent from (i.e. they are simply multiplied by) the overall volume and
channel-by- channel levels settings.

pan is a dynamic property (see dynamics).

property sound

A reference to the Sound instance that the Player is currently playing, or None. You can change it on-
the-fly. It may also change automatically when the current sound finishes playing, if you have appended
additional Sound instances the queue and have set the autoAdvance property.

property vol

This floating-point property is a multiplier for the amplitude of the sound waveforms. It is independent of
(i.e. its effect simply gets multiplied by the effects of) other properties that affect channel-to- channel level
differences, such as levels and pan

volume is a dynamic property (see dynamics).

property volume

This floating-point property is a multiplier for the amplitude of the sound waveforms. It is independent of
(i.e. its effect simply gets multiplied by the effects of) other properties that affect channel-to- channel level
differences, such as levels and pan

volume is a dynamic property (see dynamics).

audiomath.PsychToolboxInterface.Record(*p, **k)
TODO: no Record() implementation yet in this back-end

class audiomath.PsychToolboxInterface.Recorder(*p, **k)
TODO: no Recorder implementation yet in the audiomath.PsychToolboxInterface back-end

classmethod MakeRecording(*p, **k)
TODO: no Record() implementation yet in this back-end

audiomath.PsychToolboxInterface.Seconds()

An alias for PsychToolbox’s clock, psychtoolbox.GetSecs()

class audiomath.PsychToolboxInterface.Stream(device=(), mode=None, sampleRate=None,
latencyClass='DEFAULT', verbose=False,
bufferLengthMsec=None, minLatencyMsec=None)

A persistent connection to an audio driver. Multiple output callbacks (player objects) and/or multiple input
callbacks (recorder objects) may share the same Stream , or under some conditions it may be possible for each
callback (or object) to have its own Stream .

58 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

Typically, objects that play or record will automatically create a Stream or add themselves to an existing Stream ,
so you will not usually need to construct a Stream instance yourself. The exception is when you need to ensure
that the construction of such objects is itself fast: then, creating a Stream in advance, and keeping a reference
to it to use in initializing the other objects, will speed things up.

The device, mode and apiPreferences arguments are the same as id, mode and apiPreferences in
FindDevice().

The latencyClass argument is unique to the PsychToolboxInterface back-end. It specifies the PsychPor-
tAudio latency mode (use one of the names or integer values defined in the enumerator LATENCY_CLASS).

3.13 The audiomath.Signal sub-module

This semi-independent submodule provides various basic signal-processing tools that can be used with or without the
audiomath.Sound container.

audiomath.Signal.ApplyWindow(s, func=<function hanning>, axis=0, **kwargs)
If s is a numpy.ndarray, return a windowed copy of the array. If s is an audiomath.Sound object (for example,
if this is being used a method of that class), then its internal array s.y will be replaced by a windowed copy.

Windowing means multiplication by the specified window function, along the specified time axis.

func should take a single positional argument: length in samples. Additional **kwargs, if any, are passed
through. Suitable examples include numpy.blackman, numpy.kaiser, and friends.

audiomath.Signal.Click(milliseconds, positivePulseWidth=0.5, negativePulseWidth='symmetric')
A signal function that can be passed as the waveform argument to GenerateWaveform , to generate periodic
clicks. Each click is a positive pulse optionally followed by a negative pulse. If negativePulseWidth is None
or the string 'symmetric', then the width of the negative pulse is made the same as positivePulseWidth.
Otherwise, input arguments are all expressed in milliseconds.

audiomath.Signal.GenerateWaveform(container=None, freq_hz=1.0, phase_rad=None, phase_deg=None,
amplitude=1.0, dc=0.0, samplingfreq_hz=None, duration_msec=None,
duration_samples=None, axis=None, waveform=<ufunc 'cos'>,
waveform_domain='auto', **kwargs)

Create a signal (or multiple signals, if the input arguments are arrays) which is a function of time (time being
defined along the specified axis).

If this is being used as a method of an audiomath.Sound instance, then the container argument is automat-
ically set to that instance. Otherwise (if used as a global function), the container argument is optional—if
supplied, it should be a audiomath.Sound object. With a container, the axis argument is set to 0, and the
container object’s sampling frequency number of channels and duration (if non-zero) are used as fallback values
in case these are not specified elsewhere. The resulting signal is put into container.y and a reference to the
container is returned.

Default phase is 0, but may be changed by either phase_deg or phase_rad (or both, as long as the values are
consistent).

Default duration is 1000 msec, but may be changed by either duration_samples or duration_msec (or both,
as long as the values are consistent).

If duration_samples is specified and samplingfreq_hz is not, then the sampling frequency is chosen such
that the duration is 1 second—so then freq_hz can be interpreted as cycles per signal.

The default waveform function is numpy.cos which means that amplitude, phase and frequency arguments can
be taken straight from the kind of dictionary returned by fft2ap() for an accurate reconstruction. A waveform
function is assumed by default to take an input expressed in radians, unless the first argument in its signature is

3.13. The audiomath.Signal sub-module 59

audiomath Documentation, Release 1.19.1

named cycles, samples, seconds or milliseconds, in which case the input argument is adjusted accordingly
to achieve the named units. (To specify the units explicitly as one of these options, pass one of these words as
the waveform_domain argument.)

In this module, SineWave(), SquareWave(), TriangleWave() and SawtoothWave() are all functions of
cycles (i.e. the product of time and frequency), whereas Click() is a function of milliseconds. Any of these
can be passed as the waveform argument.

audiomath.Signal.Hilbert(x, N=None, axis=0, band=(), samplingfreq_hz=None, return_dict=False)
Compute the analytic signal, just like scipy.signal.hilbert but with the differences that (a) the computation
can be performed along any axis and (b) a limited band of the signal may be considered. The band argument can
be a two-, three- or four-element tuple suitable for passing to Shoulder(), specifying the edges of the passband
(expressed in Hz if samplingfreq_hz is explicitly supplied, or relative to Nyquist if not).

If return_dict is True, do not return just the complex analytic signal but rather a dict containing its amplitude,
phase, and unwrapped phase difference.

audiomath.Signal.InverseSpectrum(ap, real=True)
Inverse of Spectrum(). Takes the dict output of Spectrum() (or of the underlying fft2ap()) and runs
ap2fft() followed by ifft() on it to return a signal. If real is true, which it is by default, discard the
imaginary part of the result.

audiomath.Signal.ModulateAmplitude(s, freq_hz=1.0, phase_rad=None, phase_deg=None, amplitude=0.5,
dc=0.5, samplingfreq_hz=None, duration_msec=None,
duration_samples=None, axis=None, waveform=<ufunc 'sin'>,
**kwargs)

If s is a numpy.ndarray, return a modulated copy of the array. If s is an audiomath.Sound object (for
example, if this is being used a method of that class), then its internal array s.y will be replaced by a modulated
copy.

Modulation means multiplication by the specified waveform, along the specified time axis.

Default phase is such that amplitude is 0 at time 0, which corresponds to phase_deg=-90 if waveform follows
sine phase (remember: by default the modulator is a raised waveform, because dc=0.5 by default). To change
phase, specify either phase_rad or phase_deg.

Uses GenerateWaveform()

audiomath.Signal.Noise(cycles, distribution='uniform', **kwargs)
This function can be passed as the waveform argument to GenerateWaveform . The distribution argument
should be a function, or the name of a function within numpy.random, that takes a size keyword argument
dictating the shape of its output array. Additional **kwargs are passed through to the function.

If the function is numpy.random.uniform, then the low argument is set to -1.0 by default instead of the usual
0.0.

If the function is numpy.random.normal, then the scale argument is set to 0.2 by default instead of the usual
1.0.

audiomath.Signal.PlotSignal(x, samplingfreq_hz=None, axis=None, **kwargs)
Plot x (an array with time running along the specified axis, or an audiomath.Sound instance) against the
appropriate Timebase().

audiomath.Signal.PlotSpectrum(x, samplingfreq_hz=None, axis=None, dB=False, baseValue=None,
**kwargs)

Input argument x may be a numpy.array or audiomath.Sound , in which case Spectrum() will be called on
it. Or it may be the dict output of a previous Spectrum() or fft2ap() call.

60 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

audiomath.Signal.Reconstruct(ap, **kwargs)
Check the accuracy of fft2ap() and GenerateWaveform() by reconstructing a signal as the sum of cosine
waves with amplitudes and phases specified in dict ap, which is of the form output by fft2ap() and hence also
by Spectrum().

NB: this is for small toy/debugging examples only. Its space complexity is number-of-samples squared. For real
applications, use InverseSpectrum().

audiomath.Signal.ReweightSpectrum(s, func, *pargs, **kwargs)
Brutally filter the sound s by transforming into the Fourier domain, weighting the amplitude spectrum, and
transforming back. The filtering is non-causal and (TODO) will have wrap-around artifacts whereby the two
ends of the signal may bleed into each other, so use with caution—it is most suitable for noise or for periodic
signals. No group delay is introduced.

Args:

s (numpy.ndarray or audiomath.Sound):
The input sound data. If s is an array, a new array will be returned. If it is a Sound instance,
s will get changed in-place (the array s.y will be replaced by a new array) and returned.

func (callable):
A function that takes a numeric array of frequencies, in Hz, as its first (and only required)
argument, and outputs a corresponding array of weights.

samplingfreq_hz (float):
Sampling frequencym in Hz. Not needed if s is a Sound instance.

axis (int):
Axis along which time runs. Not needed if s is a Sound instance.

Additional *pargs and **kwargs are passed straight through to func().

audiomath.Signal.SawtoothWave(cycles, phase_deg=0, maxharm=None, rescale=False)
A sawtooth wave with its polarity and zero-crossings in sine phase. If maxharm is an integer, then an anti-aliased
approximation to the sawtooth wave (containing no components of higher frequency than maxharm times the
fundamental) is returned instead. In this case, the rescale flag can be set to ensure that the waveform does not
exceed +/- 1.0

This function can be passed as the waveform argument to GenerateWaveform .

audiomath.Signal.Shoulder(x, s, complement=False, cosine=True)
Return a (possibly asymmetric) Tukey window function of x. s may have 1, 2, 3 or 4 elements:

1. raised cosine between x=s[0]-0.5 and x=s[0]+0.5

2. raised cosine between x=s[0] and x=s[1]

3. raised cosine rise from s[0] to s[1], and fall from s[1] to s[2]

4. raised cosine rise from s[0] to s[1], plateau from s[1] to s[2], and fall from s[2] to s[3]

audiomath.Signal.SineWave(cycles, phase_deg=0, maxharm=None, rescale=False)
A sine wave, but with the input expressed in cycles (0 to 1) instead of radians (0 to 2*pi). Otherwise no different
from numpy.sin, except that the function signature has maxharm and rescale arguments (which are ignored)
for compatibility with SquareWave(), TriangleWave() and SawtoothWave().

This function can be passed as the waveform argument to GenerateWaveform .

audiomath.Signal.Spectrum(x, samplingfreq_hz=None, axis=None)
Runs fft on a signal followed by fft2ap, to return spectral information in “human-readable” format with the
annoying corner cases handled.

3.13. The audiomath.Signal sub-module 61

audiomath Documentation, Release 1.19.1

The inverse operation is InverseSpectrum().

audiomath.Signal.SquareWave(cycles, phase_deg=0, maxharm=None, rescale=False, duty=0.5, ramp=0,
tol=1e-08)

A square wave with its peaks and troughs in sine phase. If maxharm is an integer, then an anti-aliased approxima-
tion to the square wave (containing no components of higher frequency than maxharm times the fundamental) is
returned instead. In this case, the rescale flag can be set to ensure that the sampled waveform does not exceed
+/- 1.0

This function can be passed as the waveform argument to GenerateWaveform .

audiomath.Signal.Timebase(x, samplingfreq_hz=None, axis=None)
Return a discrete time axis in seconds, against which signal x can be plotted. x may be an audiomath.Sound
instance, or you may supply samplingfreq_hz explicitly.

audiomath.Signal.Toy(nSamples=11, nCycles=None, amplitude=(1.0, 0.1), phase_deg=0)
Toy sinusoidal signals for testing fft2ap() and ap2fft(). Check both odd and even nSamples.

audiomath.Signal.TriangleWave(cycles, phase_deg=0, maxharm=None, rescale=False)
A triangle wave with its peaks and troughs in sine phase. If maxharm is an integer, then an anti-aliased approxi-
mation to the triangle wave (containing no components of higher frequency than maxharm times the fundamental)
is returned instead. The rescale flag, included for compatibility with SawtoothWave() and SquareWave(),
has no effect.

This function can be passed as the waveform argument to GenerateWaveform .

audiomath.Signal.UnwrapDiff(x, base=6.283185307179586, axis=None, startval=None, dtype=None)
Assume X is a wrapped version of an underlying value Y we’re interested in. For example, it’s a 16-bit value that
wraps around at 65536, or it’s an angle which wraps back to 0 at 2*pi.

base is the value (65536 or 2*pi in the above examples) such that X = Y % base. The default value of base is
2*pi.

Let dY be the numeric diff of Y in dimension axis, computed from X by unwrapping in order to avoid jumps
larger than base/2. Thus, with base=65536, a jump from 65535 to 1 is considered as a step of +2. With
base=360, a jump from 10 to 350 is considered as a step of -20.

Y is then reconstructed based on dY and startval (which defaults to the actual initial value(s) of X).

Return value is (dY,Y).

audiomath.Signal.ap2fft(amplitude, phase_rad=None, phase_deg=None, samplingfreq_hz=2.0, axis=0,
freq_hz=None, fullfreq_hz=None, nSamples=None)

Keyword arguments match the fields of the dict output by fft2ap().

The inverse of d = fft2ap(X) is X = ap2fft(**d)

audiomath.Signal.fft2ap(X, samplingfreq_hz=2.0, axis=0)
Given discrete Fourier transform(s) X (with frequency along the specified axis), return a dict containing a prop-
erly scaled amplitude spectrum, a phase spectrum in degrees and in radians, and a frequency axis (coping with
all the fiddly edge conditions).

The inverse of d = fft2ap(X) is X = ap2fft(**d)

audiomath.Signal.fftfreqs(nSamples, samplingfreq_hz=1.0)
Return a 1-D numpy.array of length nSamples containing the positive and negative frequency values corre-
sponding to the elements of an nSamples-point FFT. If samplingfreq_hz is not supplied, 1.0 is assumed, so
the result has 0.5 as its Nyquist frequency.

62 Chapter 3. API reference

audiomath Documentation, Release 1.19.1

audiomath.Signal.msec2samples(msec, samplingfreq_hz)
Converts milliseconds to the nearest integer number of samples given the specified sampling frequency.

audiomath.Signal.samples2msec(samples, samplingfreq_hz)
Converts samples to milliseconds given the specified sampling frequency.

3.14 The audiomath.SystemVolume sub-module

Utilities for manipulating the operating-system master volume and/or mixer.

• On Windows, this requires the third-party packages comtypes and psutil (via our fork of Andre Miras’ pycaw,
which is included).

• On macOS, it uses Applescript.

• On Linux, there is a highly-experimental implementation based on pacmd and pactl (so these PulseAudio
command-line utilities must be installed).

Because of its dependencies, this submodule is not imported by default—you must explicitly import audiomath.
SystemVolume.

The recommended way to use this module is via the SystemVolumeSetting context-manager object:

import audiomath
from audiomath.SystemVolume import SystemVolumeSetting
p = audiomath.Player(audiomath.TestSound())
with SystemVolumeSetting(0.1, mute=False):

p.Play(wait=True)

audiomath.SystemVolume.GetVolume(dB=False, session='master')
Query volume level and mute settings.

If you want to query volume settings, change them, and later change them back, SystemVolumeSettings is a
more usable option.

The Linux implementation uses Pulse Audio utility pacmd. It is likely to break whenever the text format of
pacmd list-sinks changes in future versions.

audiomath.SystemVolume.SetVolume(level=None, dB=False, mute=None, session='master')
Sets volume level and/or mute status.

Consider using the context-manager class SystemVolumeSetting instead. For a description of the input argu-
ments, see SystemVolumeSetting.

The Linux implementation uses Pulse Audio utilities pacmd and pactl. It is likely to break whenever the text
format of pacmd list-sinks changes in future versions.

class audiomath.SystemVolume.SystemVolumeSetting(level=None, dB=False, mute=None,
session='master', verbose=False)

This class is a context-manager. It allows you to change the system volume temporarily, such that it automatically
changes back to its previous setting when you are done:

import audiomath
from audiomath.SystemVolume import SystemVolumeSetting
p = audiomath.Player(audiomath.TestSound())
with SystemVolumeSetting(0.1, mute=False):

p.Play()
(continues on next page)

3.14. The audiomath.SystemVolume sub-module 63

audiomath Documentation, Release 1.19.1

(continued from previous page)

audiomath.WaitFor(p) # otherwise we'll exit the `with`
clause before anything has been
streamed and won't hear the effect

For your convenience, MAX_VOLUME is a ready-instantiated SystemVolumeSetting made with level=1.0 and
mute=False:

from audiomath.SystemVolume import MAX_VOLUME
with MAX_VOLUME:

p.Play(wait=True)

SystemVolumeSetting instances can be combined together with the & operator. This is only really useful on
Windows where session-by-session control is possible:

MUTE_FIREFOX = SystemVolumeSetting(mute=True, session='Mozilla Firefox')
with MAX_VOLUME & MUTE_FIREFOX:

p.Play(wait=True)

Parameters

• level (float, None) – volume setting, from 0.0 to 1.0 (assuming dB=False) or from nega-
tive infinity to 0.0 (with dB=True). Use None if you want to leave the level untouched and
manipulate only the mute setting.

• dB (bool) – By default, level values are interpreted and expressed as relative power values
from 0 to 1. However, with dB=True you can choose to have them interpreted and expressed
in decibels, i.e. 10*log10(power), with 0.0 as the maximum.

• mute (bool, None) – Whether or not to mute the output. Use None to leave the mute setting
untouched and manipulate only the level.

• session (str, int) – (Windows only): control one individual “session” within the Windows
mixer. A string will match all sessions with the specified DisplayName or Process.
name(). An integer will match only the audio session with the specified ProcessId. A
list of sessions instances can be retrieved by GetAllSessions().

64 Chapter 3. API reference

CHAPTER

FOUR

SUPPORT

• You can ask programming questions on stackoverflow, using the [audiomath] tag (https://stackoverflow.com/
questions/tagged/audiomath)

• If an issue is confirmed to be a technical problem or bug, you can submit details at https://bitbucket.org/
snapproject/audiomath-gitrepo/issues using the “Create Issue” button. Remember to include full details of any
error, as well as audiomath.ReportVersions() output if possible.

65

https://stackoverflow.com/questions/tagged/audiomath
https://stackoverflow.com/questions/tagged/audiomath
https://bitbucket.org/snapproject/audiomath-gitrepo/issues
https://bitbucket.org/snapproject/audiomath-gitrepo/issues

audiomath Documentation, Release 1.19.1

66 Chapter 4. Support

CHAPTER

FIVE

LICENSE

This file is part of the audiomath project, a Python package for recording, manipulating and playing sound files.

Copyright (c) 2008-2024 Jeremy Hill

audiomath is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.
gnu.org/licenses/ .

The audiomath distribution includes binaries from the third-party AVbin and PortAudio projects, released under their
own licenses. See the respective copyright, licensing and disclaimer information for these projects in the subdirectories
audiomath/_wrap_avbin and audiomath/_wrap_portaudio . It also includes a fork of the third-party Python
package pycaw, released under its original license (see audiomath/pycaw_fork.py).

67

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

audiomath Documentation, Release 1.19.1

68 Chapter 5. License

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

69

audiomath Documentation, Release 1.19.1

70 Chapter 6. Indices and tables

PYTHON MODULE INDEX

a
audiomath, 19
audiomath.PortAudioInterface, 50
audiomath.PsychToolboxInterface, 55
audiomath.Signal, 59
audiomath.SystemVolume, 63

71

audiomath Documentation, Release 1.19.1

72 Python Module Index

INDEX

A
add() (audiomath.Queue method), 40
add_note() (audiomath.ffmpeg.NotInstalled method),

46
add_note() (audiomath.sox.NotInstalled method), 48
AddMethod() (audiomath.Sound class method), 24
Amplitude() (audiomath.Sound method), 24
ap2fft() (in module audiomath.Signal), 62
append() (audiomath.Queue method), 40
ApplyWindow() (audiomath.Sound method), 24
ApplyWindow() (in module audiomath.Signal), 59
audiomath

module, 19
audiomath.PortAudioInterface

module, 50
audiomath.PsychToolboxInterface

module, 55
audiomath.Signal

module, 59
audiomath.SystemVolume

module, 63
autoAdvance (audiomath.Player property), 36
AutoScale() (audiomath.Sound method), 24

B
Back() (audiomath.Queue method), 39
bits (audiomath.Sound property), 30
Bulk() (audiomath.Sound method), 24
bytes (audiomath.Sound property), 30

C
Cat() (audiomath.Sound method), 24
Center() (audiomath.Sound method), 24
clear() (audiomath.Queue method), 40
Click() (in module audiomath.Signal), 59
Concatenate() (audiomath.Sound method), 25
Concatenate() (in module audiomath), 20
Copy() (audiomath.Sound method), 25
copy() (audiomath.Sound method), 29
currentSound (audiomath.Queue property), 41
Cut() (audiomath.Recorder method), 43
Cut() (audiomath.Sound method), 25

D
dat2str() (audiomath.Sound method), 29
Delay (class in audiomath), 42
Detect() (audiomath.Sound method), 25
duration (audiomath.Sound property), 30
Duration() (audiomath.Sound method), 25
dynamics (audiomath.Player property), 36

E
Envelope() (audiomath.Sound method), 25
extend() (audiomath.Queue method), 40

F
Fade() (audiomath.Sound method), 26
Fader (class in audiomath), 41
ffmpeg (class in audiomath), 45
ffmpeg.NotInstalled, 46
fft2ap() (in module audiomath.Signal), 62
fftfreqs() (in module audiomath.Signal), 62
FindDevice() (in module au-

diomath.PortAudioInterface), 50
FindDevice() (in module au-

diomath.PsychToolboxInterface), 55
FindDevices() (in module au-

diomath.PortAudioInterface), 50
FindDevices() (in module au-

diomath.PsychToolboxInterface), 55
Forward() (audiomath.Queue method), 39
fs (audiomath.Sound property), 30
func() (audiomath.Synth static method), 32

G
GenerateWaveform() (audiomath.Sound method), 26
GenerateWaveform() (in module audiomath.Signal), 59
GetDeviceInfo() (in module au-

diomath.PortAudioInterface), 50
GetDeviceInfo() (in module au-

diomath.PsychToolboxInterface), 56
GetDynamic() (audiomath.Player method), 33
GetHostApiInfo() (in module au-

diomath.PortAudioInterface), 51

73

audiomath Documentation, Release 1.19.1

GetHostApiInfo() (in module au-
diomath.PsychToolboxInterface), 56

GetInputDevice() (in module au-
diomath.PortAudioInterface), 51

GetOutputDevice() (in module au-
diomath.PortAudioInterface), 51

GetVolume() (in module audiomath.SystemVolume), 63
GrokFormat() (audiomath.ffmpeg static method), 46
GrokFormat() (audiomath.sox static method), 48

H
head (audiomath.Player property), 36
head (audiomath.Recorder property), 45
Hilbert() (in module audiomath.Signal), 60

I
index() (audiomath.Queue method), 40
insert() (audiomath.Queue method), 41
Install() (audiomath.ffmpeg class method), 46
Install() (audiomath.sox class method), 49
InverseSpectrum() (in module audiomath.Signal), 60
IsInstalled() (audiomath.ffmpeg class method), 47
IsInstalled() (audiomath.sox class method), 49
IsolateChannels() (audiomath.Sound method), 26

L
LATENCY_CLASS (class in au-

diomath.PsychToolboxInterface), 56
Left() (audiomath.Sound method), 27
levels (audiomath.Player property), 37
levels (audiomath.PsychToolboxInterface.Player prop-

erty), 57
loop (audiomath.Player property), 37
loop (audiomath.Recorder property), 45
LowLatencyMode() (in module au-

diomath.PortAudioInterface), 51

M
MakeFall() (in module audiomath), 20
MakeHannWindow() (audiomath.Sound method), 27
MakeHannWindow() (in module audiomath), 20
MakePlateau() (in module audiomath), 20
MakeRecording() (au-

diomath.PsychToolboxInterface.Recorder
class method), 58

MakeRecording() (audiomath.Recorder class method),
43

MakeRise() (in module audiomath), 20
MixDownToMono() (audiomath.Sound method), 27
ModulateAmplitude() (audiomath.Sound method), 27
ModulateAmplitude() (in module audiomath.Signal),

60
module

audiomath, 19
audiomath.PortAudioInterface, 50
audiomath.PsychToolboxInterface, 55
audiomath.Signal, 59
audiomath.SystemVolume, 63

MoveSound() (audiomath.Queue method), 40
msec2samples() (in module audiomath.Signal), 62
muted (audiomath.Player property), 37
muted (audiomath.PsychToolboxInterface.Player prop-

erty), 57

N
nbits (audiomath.Sound property), 30
nbytes (audiomath.Sound property), 30
nchan (audiomath.Sound property), 30
nChannels (audiomath.Sound property), 30
NextTrack() (audiomath.Player method), 33
Noise() (in module audiomath.Signal), 60
norm (audiomath.Player property), 37
norm (audiomath.PsychToolboxInterface.Player prop-

erty), 58
nsamp (audiomath.Sound property), 30
nSamples (audiomath.Sound property), 30
numberOfChannels (audiomath.Sound property), 30
NumberOfChannels() (audiomath.Sound method), 27
numberOfSamples (audiomath.Sound property), 30
NumberOfSamples() (audiomath.Sound method), 27

P
PadEndTo() (audiomath.Sound method), 27
PadStartTo() (audiomath.Sound method), 27
pan (audiomath.Player property), 37
pan (audiomath.PsychToolboxInterface.Player property),

58
Pause() (audiomath.Player method), 33
Pause() (audiomath.Recorder method), 43
PitchShift (audiomath.Sound property), 30
Play() (audiomath.Player method), 33
Play() (audiomath.Queue method), 40
Play() (audiomath.Sound method), 27
Player (class in audiomath), 32
Player (class in audiomath.PortAudioInterface), 51
Player (class in audiomath.PsychToolboxInterface), 56
playing (audiomath.Player property), 37
Plot() (audiomath.Sound method), 28
PlotSignal() (in module audiomath.Signal), 60
PlotSpectrum() (in module audiomath.Signal), 60
pop() (audiomath.Queue method), 41
position (audiomath.Queue property), 41
PreviousTrack() (audiomath.Player method), 34
Process() (audiomath.ffmpeg class method), 47
Process() (audiomath.sox class method), 49

74 Index

audiomath Documentation, Release 1.19.1

Q
queue (audiomath.Player property), 37
Queue (class in audiomath), 39
QueueTest() (in module audiomath), 20

R
Read() (audiomath.Sound method), 28
ReadSamples() (audiomath.Recorder method), 43
Reconstruct() (in module audiomath.Signal), 60
Record() (audiomath.Recorder method), 44
Record() (in module audiomath), 20
Record() (in module audiomath.PortAudioInterface), 52
Record() (in module audiomath.PsychToolboxInterface),

58
Recorder (class in audiomath), 42
Recorder (class in audiomath.PortAudioInterface), 53
Recorder (class in audiomath.PsychToolboxInterface),

58
remove() (audiomath.Queue method), 41
repeatQueue (audiomath.Player property), 38
Resample() (audiomath.Player method), 34
Resample() (audiomath.Sound method), 29
ResetDynamics() (audiomath.Player method), 34
Restart() (audiomath.Queue method), 40
Reverse() (audiomath.Sound method), 29
ReweightSpectrum() (in module audiomath.Signal), 61
Right() (audiomath.Sound method), 29
rms (audiomath.Sound property), 30

S
samples2msec() (in module audiomath.Signal), 63
SamplesToSeconds() (audiomath.Sound method), 29
SawtoothWave() (in module audiomath.Signal), 61
Seconds() (in module audiomath.PortAudioInterface),

54
Seconds() (in module au-

diomath.PsychToolboxInterface), 58
SecondsToSamples() (audiomath.Sound method), 29
Seek() (audiomath.Player method), 34
Seek() (audiomath.Recorder method), 44
Set() (audiomath.Player method), 34
Set() (audiomath.Recorder method), 44
SetDefaultVerbosity() (in module au-

diomath.PortAudioInterface), 54
SetDynamic() (audiomath.Player method), 35
SetInputDevice() (in module au-

diomath.PortAudioInterface), 54
SetOutputDevice() (in module au-

diomath.PortAudioInterface), 54
SetPosition() (audiomath.Queue method), 40
SetVolume() (in module audiomath.SystemVolume), 63
Shoulder() (in module audiomath.Signal), 61
SineWave() (in module audiomath.Signal), 61

sound (audiomath.Player property), 38
sound (audiomath.PsychToolboxInterface.Player prop-

erty), 58
Sound (class in audiomath), 22
sox (class in audiomath), 47
sox.NotInstalled, 48
Spectrum() (in module audiomath.Signal), 61
speed (audiomath.Player property), 38
SplitChannels() (audiomath.Sound method), 29
SquareWave() (in module audiomath.Signal), 62
Stack() (audiomath.Sound method), 29
Stack() (in module audiomath), 21
Start() (audiomath.Recorder method), 44
Stop() (audiomath.Player method), 35
Stop() (audiomath.Recorder method), 44
Stream (class in audiomath.PortAudioInterface), 54
Stream (class in audiomath.PsychToolboxInterface), 58
SwapSounds() (audiomath.Queue method), 40
SwitchToTrack() (audiomath.Player method), 35
synchronizeDynamics (audiomath.Player property),

38
Synth (class in audiomath), 31
SystemVolumeSetting (class in au-

diomath.SystemVolume), 63

T
Tabulate() (in module audiomath.PortAudioInterface),

54
TestSound() (in module audiomath), 21
Timebase() (in module audiomath.Signal), 62
TimeStretch (audiomath.Sound property), 30
ToneTest() (in module audiomath), 21
Toy() (in module audiomath.Signal), 62
track (audiomath.Player property), 39
TriangleWave() (in module audiomath.Signal), 62
Trim() (audiomath.Sound method), 29

U
UnwrapDiff() (in module audiomath.Signal), 62

V
vol (audiomath.Player property), 39
vol (audiomath.PsychToolboxInterface.Player property),

58
volume (audiomath.Player property), 39
volume (audiomath.PsychToolboxInterface.Player prop-

erty), 58

W
Wait() (audiomath.Player method), 35
Wait() (audiomath.Recorder method), 44
WaitFor() (audiomath.Player method), 35
WaitFor() (audiomath.Recorder method), 44

Index 75

audiomath Documentation, Release 1.19.1

with_traceback() (audiomath.ffmpeg.NotInstalled
method), 46

with_traceback() (audiomath.sox.NotInstalled
method), 48

Y
y (audiomath.Sound property), 30

76 Index

	Installation
	Compatibility and requirements
	Normal installation
	Advanced installation (from version-controlled sources)

	How to…
	Read a sound from a file into memory
	Write a sound from memory into a file
	Create a sound from scratch, in memory
	Define a functionally-generated sound
	Perform simple arithmetic
	Extract a segment of a sound
	Extract selected channels from multi-channel sounds
	Concatenate sounds in time (splicing)
	Stack channels (multiplexing)
	Pitch-shift or time-stretch a sound
	Preprocess a sound using SoX
	Manipulate a sound in other miscellaneous ways
	Plot a sound
	Play sounds
	Play sounds with more-precise latency, via PsychPortAudio
	Record a sound into memory
	Record a sound directly to file
	Target a particular input or output device
	Manipulate the operating-system’s overall volume settings
	Measure audio latency

	API reference
	The audiomath package
	Summary
	Classes
	Global functions and constants

	The Sound class
	The Synth class
	The Player class
	The Queue class
	The Fader class
	The Delay class
	The Recorder class
	The ffmpeg class
	The sox class
	The audiomath.PortAudioInterface sub-module
	The audiomath.PsychToolboxInterface sub-module
	The audiomath.Signal sub-module
	The audiomath.SystemVolume sub-module

	Support
	License
	Indices and tables
	Python Module Index
	Index

